High-mass protostars and pre-stellar cores at the dawn of *Herschel* and ALMA

Frédérique Motte (AIM/SAp, CEA-Saclay)

Collaborators: S. Bontemps (OASU/LAB, Obs Bordeaux)
N. Schneider, T. Csengeri (AIM/SAp, CEA-Saclay)
P. Schilke, F. Wyrowski, K. Menten (MPIfR Bonn)
D. Lis, T. Phillips (Caltech Pasadena), D. Dowell (JPL)

The team of the Spitzer Legacy "Cygnus X": J. Hora, S. Bontemps, T. Megeath, N. Schneider, F. Motte, S. Carey, R. Simon, E. Keto, H. A. Smith, L. Allen, R. Gutermuth, G. Fazio, K. Kraemer, D. Mizuno, S. Price, J. Adams

Seeking the precursors of high-mass stars

Criteria previously used to search for the progenitors of UCH IIS:

- high-luminosity sources
- embedded in massive envelopes
- associated with hot dust & gas
- without a developed H II region

> $10^3 L_{\odot}$ red FIR colors, dense gas hot core and masers no or weak cm free-free

High-luminosity IR protostar candidates (HMPOs)

Criteria to use to search for the even earlier phases:

- small-scale cloud fragments
- which are dense
- weak @ mid-IR λ

diameter = 0.01-0.1 pc $<n_{H2}> > 10^5-10^7 \text{ cm}^{-3}$ $< 10^3 L_{\odot}$

High-mass class 0 protostars and massive pre-stellar cores

(Sub-)millimeter dense cores (present talk and poster by Schuller et al.) or cores within IR dark clouds.

Study of entire, nearby (<3 kpc), molecular complexes forming OB stars

+ enough statistics
to survey high-mass YSOs
+ better spatial resolution
than most existing surveys

Cygnus X complex: massive (4 x $10^6 M_{\odot}$) @ 1.7 kpc several OB associations

The submm imaging of such regions provides samples which are:

- + complete: they contain massive pre-stellar and protostellar objects
- + homogeneous: all sources are at the same distance
- statistically limited to the precursors of 10-40 M_{\odot} stars

A 1.2 mm continuum survey of Cygnus X

MAMBO-2 / IRAM 30m ~ 3 deg², 11" beam Tracing spatial scales: 0.09 - 5 pc

Dense cores (~ 0.1 pc) extracted from clumps (~ 1 pc) with a multi-resolution analysis of the cloud structure (cf. *Motte et al. 2003, 2007*)

Unbiased census in Cygnus X:

→ 42 dense cores (compact cloud fragments, ~ 0.1 pc) which are probable precursors of high-mass stars (> 40 M_{\odot})

A sample of very high-density cores

	clumps	clumps	dense cores	dense cores	condensations
FWHM sizes	0.5 pc	0.5 pc	0.13 pc	0.1 рс	0.01 pc
Mass	$290 M_{\odot}$	150 M _☉	91 M_{\odot}	$5 M_{\odot}$	$0.15 M_{\odot}$
Mean density	7 10 ⁴ cm ⁻³	5 10 ⁴ cm ⁻³	1.5 10 ⁶ cm ⁻³	$3 \ 10^5 \ \mathrm{cm}^{-3}$	1.5 10 ⁷ cm ⁻³
	(Beuther et al. 2002)	(Rathborne et al. 2006)	(Motte et al. 2007)	(Ward-Thompson et al. 1999)	(Motte et al. 1998)

Pre-stellar or protostellar dense cores?

• IR-quiet or High-luminosity?

"IR-quiet" = less luminous than a B3 star (< $10^3 L_{\odot}$) \Rightarrow S _{21 µm} < 10 Jy @ 1.7 kpc

Cygnus X high-mass dense cores are: - UCH IIs for ~40%

- High-luminosity protostars for $\sim 20\%$
- IR-quiet sources for $\sim 40\%$
- High-mass IR-quiet dense cores: protostellar or pre-stellar? SiO outflows are very powerful

Luminosity of IR-quiet high-mass dense cores

L_{bol} = 150 - 3500 L_☉
L_{smm}/L_{bol} ratio like class 0s
Strong S_{24 µm} flux relatively to low-mass Class 0s
Young protostellar embryo that will probably be massive

From massive IR-quiet dense cores to high-mass class 0 protostars

IRAM Plateau de Bure maps identify individual protostars $(1'' \sim 0.01 \text{ pc resolution})$

6/17 IR-quiet protostars already observed

First results:

- 1-3 massive (~ 5-20 M_{\odot}) components
- one is coinciding with the *Spitzer/MIPS* (0.05 pc) source
 integrated SiO is dominated by a single outflow

High-mass class-0 protostars

We need *Herschel* and ALMA/JWST to measure accurate bolometric luminosity for individual protostars.

Rough scaling gives:
$$50-500 L_{\odot}$$

Evolutionary M_{env}/L_{bol} diagram of high-mass protostars: 5-20 M_{\odot}

 $L_{smm}/L_{bol} \sim 1-3\% \Rightarrow very young$ $\langle n_{H2} \rangle \sim 10^7 \text{ cm}^{-3} \Rightarrow \text{SFE} > 50\% ?$

Lifetime of high-mass protostars and pre-stellar condensations

Estimates in Cygnus X from 0.1 pc studies (*Motte et al. 2007*) and 0.02 pc extrapolations (*Bontemps et al. in prep.*):

	OB stars	High-mass protostars (high-luminosity IR + IR-quiet)	Pre-stellar condensations
Nb in Cygnus X	2 600	$(23 + 14 \text{ to } 16) \times 1 \text{ to } 2$	1 to 16
Statistical lifetimes relative to OB stars	2 10 ⁶ yr	~ 3 to 6 10 ⁴ yr	~ 0.1 to 1 10 ⁴ yr
Expected lifetime		one x 2 10 ⁴ yr (free-fall)	a few x 2 10 ⁴ yr (free-fall)
Low-mass analogs		$2 \ 10^5 m yr$	2 10 ⁵ yr

Unbiased studies shows that the high-mass star formation process is ⇒ rapid compared to low-mass star formation in nearby clouds. ⇒ supersonic during its protostellar and starless phases (convergent flows? global contraction?).

Global collapse observed in dense clouds

(Schneider et al.)

SHARC 350 µm (Motte et al.)

(see also Williams & Garland 2002; Peretto et al. 2005)

10 pc

 $18^{h}47^{m}40^{s}$ α (2000)

Summary and near future

We may have identified bona-fide high-mass (20 M_{\odot} ?) class 0 protostars in Cygnus X. They are:

- small-scale cloud condensations
- extremely dense
- Iow-luminosity
- globally cold but with a <u>large excess @ mid-IR λ</u>
- which drive powerful outflows

diameter = 0.02 pc $< n_{H2} > ~ 10^7 \text{ cm}^{-3}$ $L_{bol} ~ 10^2 - 10^3 L_{\odot}$ $S_{24\mu m} / S_{1mm} \times 10$ (wrt low-mass class 0s) $I_{SiO} \times 2$

(wrt the most extreme cases of intermediate-mass class 0s)

Studying other complexes is mandatory to have a better statistics (cf. HOBYS on *Herschel*, ATLASGAL at APEX, + follow-ups...)
ALMA is necessary to:

measure the luminosity of high-mass protostars,

trace their kinematics,

resolve further-away >20 M_{\odot} protostars, ...

Postdoctoral positions

Three postdoctoral positions in France

- dates: for 2 to 3 years, starting in 2009 or 2010
- focus: the earliest phases of high-mass star formation in our Galaxy
- in the framework of the "PROBES" project: "Proto-OB stars: identifying the targets for ALMA in Galactic-wide surveys" http://www.obs.u-bordeaux1.fr/radio/SBontemps/probes.html

Contacts:

- Bordeaux Sylvain Bontemps
- Saclay Frédérique Motte
- Marseille Annie Zavagno

bontemps@obs.u-bordeaux1.fr frederique.motte@cea.fr annie.zavagno@oamp.fr

Related key programs: on *Herschel*: HOBYS, WISH, Hi-GAL on APEX: ATLASGAL