Molecular SFR Indicators in GMCs and Galaxies

Desika Narayanan

Harvard-Smithsonian CfA

Radiative Transfer Modeling

Yancy Shirley Romeel Dave Chris Walker

Hydrodynamic Modeling

T.J. Cox Lars Hernquist

Observations

Shane Bussmann Stephanie Juneau John Moustakas Yancy Shirley Phil Solomon Paul Vanden Bout Jingwen Wu

Kennicutt-Schmidt SFR Relations SFR ~ $\rho_{gas}^{1.5}$

 $\Sigma_{\text{SFR}} \alpha \overline{\Sigma_{\text{gas}}}$ 3 2 Ηα yr⁻¹ kpc⁻²) 0 (M_o Log ZSFR $^{-2}$ -3HI + CO-40 2 5 1 3 4 $Log \Sigma_{gas}$ (M₀ pc⁻²) Kennicutt, 1998

Theoretically

 $t_{SF} \sim \rho^{-1/2}$

M_☉ ~ ρ

SFR =
$$M_{\odot}/t \sim \rho^{3/2}$$

-orbital time scale of galactic disk -cloud-cloud collision time -turbulence crossing time -gas accumulation time along magnetic field lines -fractalized structure of clouds

Elmegreen (2002) Kravtsov (2003) Krumholz & McKee (2005) Padoan (1995) Silk (1997) Shu (1987) Tan (2000) Tassis (2008) Tassis & Mouschovias (2004)

Desika Narayanan ALMA - Charlottesville

Molecular Kennicutt-Schmidt SFR Laws SFR ~ $\rho_{\text{gas}}^{1.5}$

Interpretation: A more 'fundamental' SFR Relation?

galaxies

clumps

log[L'_{HCN1-0}](K km s⁻¹

5

Wu et al, 2005

1.01X+2.83

10

pc²)

HCN (J=1-0)¹

Interpretation: A more 'fundamental' SFR Relation?

L_{IR} ~ HCN (J=1-0)¹

Chicken or Egg?

 SFR is linearly dependent on dense gas (N=1); Kennicutt-Schmidt relations are consequent.

» SFR ~ ρ_{dense}

Gao & Solomon 2004; Wu et al. 2005; Narayanan et al. 2005; Tassis 2007

- KS index of N=1.5 is underlying; Observed SFR-dense gas relations are consequent $_{*}$ SFR ~ $\rho^{1.5}$

Krumholz & Thompson 2007, Narayanan et al. 2008

GADGET SPH Simulations

Gas

T = 0 Myr

Prescriptions for multi-phase ISM (McKee-Ostriker), SF, BH growth and associated Feedback (though BH winds turned off)

100 galaxies used: 20 disk Galaxies 80 merger snapshots

SF follows SFR $\alpha\,\rho^{\,1.5}$

Assuming $t_{SFR} \sim \rho^{-1/2}$

Springel et al. (2003-2005)

, _____MA - Charlottesville

Non-LTE Radiative Transfer

- 3D Monte Carlo code developed based on improved Bernes (1979) algorithm
- Considers full statistical equilibrium with collisional and radiative processes
- Sub-grid algorithm considering mass spectrum GMCs as SIS (Blitz et al. 2006, Rosolowsky 2007, Bolatto et al. 2008)
- M_{cloud} =10⁴-10⁶ M_{\odot} , Uniform Galactic CO Abundance, 10 CO transitions, 10 million rays per iteration

Can we Recover the Basic Relations? SFR-CO index SFR-HCN index

Can we Recover the Basic Relations? SFR-CO index SFR-HCN index

1.2

SFR ~ ρ $^{1.5}$ (assumed Schmidt Law)

```
SFR ~ L_{mol} \propto (observed)
```

 $L_{\text{molecule}} \sim \rho^{\beta}$

2.0

Then α =1.5/ β

So we need to understand how line luminosity varies with gas density

SF follows SFR $\alpha\,\rho^{\,1.5}$

Narayanan et al. 2008

Two Models for Linear Molecular SFR "Laws"

 HCN, CO (J=3-2) probe dense, starforming cores, and SFR~ρ_{dense}

- SFR-L_{mol} relations will be linear for all high n_{crit} tracers

Gao & Solomon 2004; Wu et al. 2005; DN et al. 2005

 SFR-L_{mol} relations dependent on relationship between n_{crit} and <n>;

-observed SFR-L_{mol} relations will change with increasing n_{crit}

• Krumholz & Thompson 2007, DN et al. 2008

Testable Predictions

- L_{IR}-L_{mol} relation for other high critical density molecular Species/lines (Predict rather than Post-dict!)
- High mean gas density limit slopes should tend toward the underlying Schmidt index

Predicted Slopes for CO and HCN

Desika Narayanan

HCN (J=3-2) Observational Survey

Bussmann, DN, Shirley, Wu, Juneau, Vanden Bout, Solomon et al. (2008)

HCN (J=3-2) Observational Survey

Linear SFR-Lmol relation expected for high ncrit tracers if SFR~ ρ_{dense}

Bussmann, DN, Shirley, Juneau, Wu, Solomon, Vanden Bout et al.

Desika Narayanan ALMA - Charlottesville

General Conclusions & Directions for ALMA

- SFR-dense gas relations naturally explained if underlying KS law of N=1.5 controlls SFR
- SFR-L_{mol} index in galaxies and GMCs depedant on the average relation between n_{crit} and the <n>; SFR / ρ_{dense}

Testable Predictions

- L_{IR}-L_{mol} relation for other high critical density molecular Species/lines (Predict rather than Post-dict!)
- High mean gas density limit slopes should tend toward the underlying Schmidt index

Gao et al. 2007

When <n> ~ $n_{crit,} \beta=1$ Then $\alpha=1.5/\beta \sim 1.5$

GADGET SPH Simulations

Prescriptions for multi-phase ISM (McKee-Ostriker), SF, BH growth and associated Feedback (though BH winds turned off)

100 galaxies used: 20 disk Galaxies 80 merger snapshots

SF follows SFR $\alpha \rho^{1.5}$

Assuming $t_{SFR} \sim \rho^{-1/2}$

Caveats: What about L_{IR}-L_{mol} relation in dense GMC cores?

log[L_{IR}](L_{sun}

L_{IR} α HCN (J=1-0)

Two potential resolutions:

 The dense cores observed have <ρ> << n_{crit}

2. SFR follows a broken powerlaw:

$$\begin{split} \text{SFR} &\sim \rho \ ^{1.5} &< \rho > \ << \textbf{n}_{\text{thresh}} \\ \text{SFR} &\sim \rho \ ^{1} &< \rho > \ >> \textbf{n}_{\text{thresh}} \end{split}$$

Wu et al. 2005

Krumholz & Thompson models for GMCs

Detailed understanding of an individual galaxy

Relation Between Line Luminosity and Gas Density : CO (J=1-0)

Desika Narayanan ALMA - Charlottesville

Relation Between Line Luminosity and Gas Density : CO (J=1-0)

Desika Narayanan ALMA - Charlottesville

Relation Between Line Luminosity and Gas Density : CO (J=3-2)

-Emission from subthermally excited cells is characteristically higher than collisions in the diffuse gas would normally account for.

-Emission from this gas along the LOS results in superlinear relation between increasing gas density and CO (J=3-2) flux.

$$\begin{split} & \text{SFR} \thicksim \text{L}_{\text{CO} (J=3\text{-}2)} \, ^{\alpha} \\ & \text{L}_{\text{CO} (J=3\text{-}2)} \thicksim \rho^{\,\beta} \end{split}$$

β~1.5 Then α=1.5/β ~ 1

GADGET SPH Simulations

Prescriptions for multi-phase ISM (McKee-Ostriker), SF, BH growth and associated Feedback (though BH winds turned off)

100 galaxies used: 20 disk Galaxies 80 merger snapshots

SF follows SFR $\alpha \rho^{1.5}$

Assuming the free-fall time argument for SFR ~ $\rho^{1.5}\,$ holds

Springel et al. (2003-2005),

Relation Between Line Luminosity and Gas Density : CO (J=3-2)

Caveats: What about L_{IR}-L_{mol} relation in dense GMC cores?

 $L_{IR} \alpha$ HCN (J=1-0)

Wu et al. 2005

Desika Narayanan ALMA - Charlottesville

Krumholz & Thompson Models for GMCs

Krumholz & Thompson, 2007 - model works for individual clouds

Desika Narayanan ALMA - Charlottesville

