Chemical evolution of massive star-forming regions

Floris van der Tak

Netherlands Organisation for Scientific Research

Two roles of chemistry in star formation studies

- Submm line radiation unique probe of
 - kinematics
 - temperature, density, ...
- Need to know which molecules are abundant under which conditions
- Active astrochemistry: use chemical models to learn about
 - ages of objects
 - invisible (ionizing) radiation
 - temperature history
- Parameters hard to obtain otherwise!
- Currently >140 molecules known in space (38 extragalactic, 10 in solid state). Detection rate = a few per year!

Basic chemical processes in star formation

- Cold gas: ion-molecule reactions
 - no barriers, e.g., CO + $H_3^+ \rightarrow HCO^+ + H_2$ (ions from CR)
 - production rates OK, recombination rates / products uncertain
- Warm gas: neutral-neutral reactions
 - uncertain rates and barriers, e.g., O + OH \rightarrow O₂ + H
 - Odin detection in Oph << prediction: need lab data at low T
- Cold dust: catalyst for H or O addition
 - CO \rightarrow CH₃OH route efficient in lab
 - uncertain *T* dependence (surface roughness)
- Warm dust: ice evaporation
 - CO, N_2 at 20 K, bulk H_2O at 110 K
 - rearrangement during warm-up key to complexity

New molecules 2008

- Negative ions
 - C₈H⁻ (Agúndez / Sakai et al 2008)
 - C_3N^- (Thaddeus et al 2008)

Phosphorus compounds

- CCP (Halfen et al 2008)
- PH₃ (Tenenbaum & Ziurys 2008; Agúndez et al 2008)

Complex organics

- CH(O)CN (Remijan et al 2008)
- NH₂CH₂CN (Belloche et al 2008)
- No D-molecules so far ...

Reliable line ID: (1) full-spectrum analysis; (2) imaging information

Deuterium fractionation in low- and high-mass cores

- Survey of 16 low-mass pre/protostellar cores:
 - [D/H] ~0.1 in densest cores
 - >99% of CNO freezes out
 - as $n \uparrow, T \downarrow$ below 10 K
 - when star turns on, [D/H] drops quickly
 - chance to constrain grain size
- High-mass cores:
 - 10-100x lower [D/H]
 - higher in low-M neighbours

High-mass pre-stellar cores: short time scales, high temperatures Caselli et al 2008; Fontani et al 2008; posters DiFrancesco, Pillai

Ages of protostars in the IRAS 18151-1208 region

- MM1: mature protostar
 - strong outflow
 - bright in mid-IR
- MM2: young protostar
 - small outflow
 - weak mid-IR source
- MM3: pre-stellar core
 - weak line emission
 - narrow lines without wings

Systematic decrease of N_2H^+ / CS abundance ratio MM3 \rightarrow MM1: Evolutionary indicator? Marseille et al 2008

Enhanced cosmic-ray density in SgrB2

- ζ_{CR} key for cloud dynamics and chemistry
 - locally $\zeta_{CR} = 3 \times 10^{-17} \text{ s}^{-1}$
 - factor -/+3 variation: extinction or location?
- APEX: $H_3O^+ / H_2O = 1/50$
 - ζ_{CR} 10x higher than local clouds
 - even higher ζ_{CR} in SgrA

Variation of cosmic-ray density by factor ~10 across Galaxy; and by factor ~3 due to attenuation / energy loss Van der Tak et al 2006

Detection of extragalactic H₃O⁺

- M82: prototype starburst
 - *d* = 4 Mpc
 - IRAM 30m detection of CO+
 - Emission likely extended
- Arp 220: prototype merger
 - *d* = 72 Mpc
 - ISO detection of H₂O
 - Emission confined to W nucleus?

For M82 need PDR with $\zeta_{CR} \sim 100 \zeta_0$: evolved starburst. For Arp 220 need X-rays: from AGN (?) or from HMXB in starburst Van der Tak et al 2008; see poster Pellegrini

• Five star-forming regions, 330-373 GHz, 2x2 arcmin, 15 arcsec

- PDR: Orion Bar
- Low mass core: NGC 1333 IRAS 4A
- Intermediate mass core: IRAS 20126
- High mass core: AFGL 2591
- Starburst template: W49N

Van der Wiel et al 2008; see poster Richer

Future opportunities 1: *Herschel*-HIFI

- WISH: follow water trail through star formation
- HS3F: molecular inventory of star-forming regions
- PRISMAS: measure composition of interstellar gas along line of sight toward bright Galactic objects (in absorption)
- HOP: measuring excitation and abundance of O₂ in a range of interstellar environments

Water line profile predictions for $L = 2/7/25 L_0$: Van Kempen et al 2008

Future opportunities 2: ALMA

- Resolve small-scale differentiation
- Sensitivity to detect isotopic lines → optical depth
- Bandwidth for multi-line studies
 → excitation
- Separate envelope / outflow / disk chemistry

BIMA observations of G34.26: Mookerjea et al 2007

11

Converging flows in W3 IRS5?

- Protocluster of 4-5 OB stars
 - separation 0.1 pc
 - $L = 10^5 L_0$, d = 2 kpc
- Velocity jump in SO₂ emission
 - PdB data, beam 0.36 arcsec
 - also seen in SMA data
- Protostars close to front
 - triggered by collision?

Rodón et al 2008

