Molecular gas dynamics in Iuminous infrared galaxies observed with the SMA

Chris Wilson, McMaster University

- What are luminous infrared galaxies?
 The SMA Legacy Project
- 3. Comparison to high redshift sources

The SMA U/LIRG Legacy Survey

- Chris Wilson, Brad Warren, Adam Atkinson, Jen Golding (McMaster)
- Glen Petitpas, Melanie Krips, T. J. Cox (CfA), Daisuke Iono (NAOJ), Alison Peck (ALMA)
- Andrew Baker (Rutgers), Lee Armus (IPAC), Paul Ho, Satoki Matsushita (ASIAA), Mike Juvela (U. Helsinki), Chris Mihos (Case Western), Ylva Pihlstrom (New Mexico), Min Yun (UMass)
- This talk based on Wilson et al. 2008 (ApJS, in press) and lono et al. 2008 (ApJ, submitted)

ULIRGS are galaxy mergers

Figure from Galliano 2004

Scoville et al. 2000

All galaxies with $L_{FIR} > 5x10^{11} L_{o}$ are interacting or close pairs (Sanders et al. 1987)

Luminosity Source: Starbursts and AGN

Genzel et al. 1998

- 70-80% predominantly starbursts
- 20-30% predominantly AGN

Gas Morphology and Dynamics in Luminous Infrared Galaxies: Sample Selection

- Representative sample of 14 luminous $(log(L_{FIR}) > 11)$ and ultraluminous $(log(L_{FIR}) > 12)$ infrared galaxies
- $D_L < 200 \text{ Mpc}$ (resolution 1" ~ 1 kpc)
- $\log(L_{FIR}) > 11.4$
- All with previous interferometric observations in the CO J=1-0 line

The Nearby Luminous Infrared Galaxy Sample

117208-0014	Mrk231	Mrk273	110565+2448
		(])	
12.41	12.31	12.08	11.93
UGC5101	Arp299	Arp55	Arp193
11.87	11.74	11.60	11.59
NGC6240	W114	NGC5331	NGC2623
	_		
11.54	11.50	11.49	11.48
() 11.54 NGC5257/8	11.50 NGC1614	11.49	11.48
()) 11.54 NGC5257/8	11.50 NGC1614	11.49	11.48

Centrally compact CO 3-2 emission

(HST images of Arp55 and 110565+2448 from Evans, Vavilkin, et al., 2008, in prep.)

Extremely high central gas surface densities

- Peak gas surface densities range from 10³ to 10⁴ M_o/pc^2 inside 0.5-1.2 kpc² area
 - $6x10^{22} 6x10^{23} H_2/cm^2$
 - A_v=70-700 mag
- Average volume density at peak range from 1 to 15 $M_{\rm o}/pc^3$
 - $n_{\rm H} = 20 300 \, {\rm cm}^{-3}$
 - Estimated as (gas surface density) / (beam radius)
- Average volume density is comparable to a GMC, but volume is 10³-10⁶ times larger
 - > 1 kpc versus 10-100 pc

Star formation rates and efficiencies

- $L_{IR}/M(H_2)$ ranges from 30 to 600 L_o/M_o
 - Total LIR divided by total SMA $M(H_2)$...
- Log(L_{IR})= 11.43 -12.41 implies star formation rates of 50 450 M_o/yr
 - Kennicutt 1998, ARAA
 - Caution: some L_{IR} could be from AGN
- gas depletion times of 1×10^7 to 2×10^8 yr
 - Note naïve calculation, does not include possibility of gas recycling
- Very high star formation rates and efficiences compared to normal galaxies or GMCs

ULIRGs are best local analogs to dusty galaxies at high redshift

Ivison et al. 2000

Tacconi et al. 2006

- Cosmologically significant population of very luminous dusty galaxies discovered at submm wavelengths
- For z>0.5, 5 mJy at 850 μ m implies L > 8x10¹² L_o

CO(3-2) traces dense star forming gas

 Slope (0.92+/-0.03) is similar to HCN (Gao & Solomon 2004) and significantly steeper than CO(1-0) (Yao et al. 2003)

Relation between gas surface density and far-infrared luminosity

- Gas surface densities in M_o/pc²:
 - 1400 ± 350 U/LIRGs
 - 2290 ± 890 SMGs
 - 4280 ± 600 quasars
- Surface density correlates with farinfrared luminosity
 - $L'_{CO(3-2)}$ to M(H₂) using M(H₂)=0.8L'_{CO(3-2)}
 - assumes CO3-2/1-0=1
 - Note surface densities are not corrected for inclination

What will ALMA be able to do? Two examples ...

- CO J=3-2
- 30 pc (0.06" at 100 Mpc)
- 4 hr, 5 km/s resolution gives 2 K rms
- Probe structure of molecular ISM on GMC scales

- Astrochemistry (HCN, HCO+ 4-3, etc.)
- 200 pc (0.2" at 200 Mpc)
- 4 hr, 20 km/s resolution gives 0.1 K rms
- Probe astrochemistry in starburst regions

Conclusions

- L'_{CO(3-2)} and L_{FIR} correlated over 5 orders of magnitude
 - CO(3-2) traces dusty star formation activity
 - Star formation efficiency constant to within a factor of two in many galaxies

- ALMA:
 - Higher resolution studies of physics and chemistry of ISM in starbursts
 - Statistically complete samples to 200 Mpc or beyond
- Future work with SMA data:
 - Spatially and velocity resolved physical conditions in gas
 - Comparison with merger simulation

Molecular gas in merging galaxies

High-redshift comparison sample

- Select high-redshift objects with high resolution observations in CO(3-2) line
 - 12 submillimeter galaxies (SMGs) from z=2.2-3.1 (one at z=1.3)
 - -9 quasars from z=2.3-2.8 (one at z=6.4)
 - 2 Lyman Break Galaxies (LBGs) at z=2.7-3.1
- References for CO data:
 - SMGs: Genzel et al. 2003, Downes & Solomon 2003, Sheth et al. 2004, Greve et al. 2005, Tacconi et al. 2006, Iono et al. 2006
 - Quasars: Downes et al. 1995, Barvainis et al. 1998, Guilloteau et al. 1999, Weiss et al. 2003, Walter et al. 2004, Beelin et al. 2004, Hainline et al. 2004, Solomon & van den Bout 2005
 - LBGS: Baker et al. 2004, Coppin et al. 2007