Molecular gas dynamics in luminous infrared galaxies observed with the SMA

Chris Wilson, McMaster University

1. What are luminous infrared galaxies?
2. The SMA Legacy Project
3. Comparison to high redshift sources

The SMA U/LIRG Legacy

Survey

- Chris Wilson, Brad Warren, Adam Atkinson, Jen Golding (McMaster)
- Glen Petitipes, Melanie Krips, T. J. Cox (CfA), Deisuke lono (NAOJ), Alison Peck (ALMA)
- Andrew Baker (Rutgers), Lee Armus (IPAC), Paul Ho, Satoki Matsushita (ASIAA), Mike Juvela (U. Helsinki), Chris Mihos (Case Western), Ylva Pihlstrom (New Mexico), Min Yun (UMass)
- This talk based on Wilson et al. 2008 (ApJS, in press) and lono et al. 2008 (ApJ, submitted)

ULIRGS are galaxy mergers

Lagache, G et al. 2005
Annu. Rev. Astron. Astrophys. 43: 727-68
Figure from Galliano 2004

Scoville et al. 2000

All galaxies with $\mathrm{L}_{\text {FIR }}>5 \times 10^{11} \mathrm{~L}_{\mathrm{o}}$ are interacting or close pairs (Sanders et al. 1987)

Luminosity Source: Starbursts and AGN

- 70-80\% predominantly starbursts

Genzel et al. 1998

- 20-30\% predominantly AGN

Gas Morphology and Dynamics in Luminous Infrared Galaxies:

Sample Selection

- Representative sample of 14 luminous $\left(\log \left(L_{\text {FIR }}\right)>11\right)$ and ultraluminous
$\left(\log \left(L_{\text {FIR }}\right)>12\right)$ infrared galaxies
- $\mathrm{D}_{\mathrm{L}}<200 \mathrm{Mpc}$ (resolution $1^{\prime \prime} \sim 1 \mathrm{kpc}$)
- $\log \left(L_{\text {FIR }}\right)>11.4$
- All with previous interferometric observations in the CO J=1-0 line

The Nearby Luminous Infrared Galaxy Sample

117208-0014 12.41	Mrk231 12.31	Mrk273 12.08	$110565+2448$ 11.93
UGC5101 11.87	Arp299 11.74	Arp55 11.60	Arp193 11.59
NGC6240 11.54	W114 11.50	NGC5331 11.49	NGC2623 11.48
NGC5257/8 11.43	NGC1614 11.43		

Centrally compact CO 3-2 emission

Extremely high central gas surface densities

- Peak gas surface densities range from 10^{3} to $10^{4} \mathrm{M}_{0} /$ pc^{2} inside $0.5-1.2 \mathrm{kpc}^{2}$ area
$-6 \times 10^{22}-6 \times 10^{23} \mathrm{H}_{2} / \mathrm{cm}^{2}$
- $A_{V}=70-700 \mathrm{mag}$
- Average volume density at peak range from 1 to 15 M_{0} / pc^{3}
$-\mathrm{n}_{\mathrm{H}}=20-300 \mathrm{~cm}^{-3}$
- Estimated as (gas surface density) / (beam radius)
$>$ Average volume density is comparable to a GMC, but volume is $10^{3}-10^{6}$ times larger
> 1 kpc versus $10-100 \mathrm{pc}$

Star formation rates and efficiencies

- $\mathrm{L}_{\mathrm{IR}} / \mathrm{M}\left(\mathrm{H}_{2}\right)$ ranges from 30 to $600 \mathrm{~L}_{\mathrm{o}} / \mathrm{M}_{\mathrm{o}}$
- Total LIR divided by total SMA M(H_{2}) ...
- $\log \left(\mathrm{L}_{\mathrm{IR}}\right)=11.43-12.41$ implies star formation rates of $50-450 M_{0} / y r$
- Kennicutt 1998, ARAA
- Caution: some L_{IR} could be from AGN
- gas depletion times of 1×10^{7} to $2 \times 10^{8} \mathrm{yr}$
- Note naïve calculation, does not include possibility of gas recycling
$>$ Very high star formation rates and efficiences compared to normal galaxies or GMCs

ULIRGs are best local analogs to dusty galaxies at high redshift

Ivison et al. 2000

Tacconi et al. 2006

- Cosmologically significant population of very luminous dusty galaxies discovered at submm wavelengths
- For $z>0.5,5 \mathrm{mJy}$ at $850 \mu \mathrm{~m}$ implies $\mathrm{L}>8 \times 10^{12} \mathrm{~L}_{\text {。 }}$

CO(3-2) traces dense star forming gas

- Slope (0.92+/-0.03) is similar to HCN (Gao \& Solomon 2004) and significantly steeper than $\mathrm{CO}(1-0)$ (Yao et al. 2003)

Relation between gas surface density and far-infrared luminosity

- Gas surface densities in $\mathrm{M}_{\mathrm{o}} / \mathrm{pc}^{2}$:
- 1400 ± 350 U/LIRGs
-2290 ± 890 SMGs
- 4280 ± 600 quasars
- Surface density correlates with farinfrared luminosity
- $\mathrm{L}^{\prime}{ }_{\mathrm{CO}(3-2)}$ to $\mathrm{M}\left(\mathrm{H}_{2}\right)$ using $\mathrm{M}\left(\mathrm{H}_{2}\right)=0.8 \mathrm{~L}^{\prime} \mathrm{Co}(3-2)$
- assumes CO3-2/1-0=1
- Note surface densities are not corrected for inclination

What will AlMA be able to do?

Two examples

- CO J=3-2
- $30 \mathrm{pc}(0.06$ " at 100 Mpc)
- $4 \mathrm{hr}, 5 \mathrm{~km} / \mathrm{s}$ resolution gives 2 K rms
- Probe structure of molecular ISM on GMC scales
- Astrochemistry (HCN, HCO+ 4-3, etc.)
- 200 pc ($0.2^{\prime \prime}$ at 200 Mpc)
- $4 \mathrm{hr}, 20 \mathrm{~km} / \mathrm{s}$ resolution gives 0.1 K rms
- Probe astrochemistry in starburst regions

Conclusions

- $\mathrm{L}^{\prime}{ }_{\mathrm{CO}(3-2)}$ and $\mathrm{L}_{\mathrm{FIR}}$ correlated over 5 orders of magnitude
- $\mathrm{CO}(3-2)$ traces dusty star formation activity
- Star formation efficiency constant to within a factor of two in many galaxies
- ALMA:
- Higher resolution studies of physics and chemistry of ISM in starbursts
- Statistically complete samples to 200 Mpc or beyond
- Future work with SMA data:
- Spatially and velocity resolved physical conditions in gas
- Comparison with merger simulation

Molecular gas in merging galaxies

High-redshift comparison sample

- Select high-redshift objects with high resolution observations in CO(3-2) line
- 12 submillimeter galaxies (SMGs) from $z=2.2-3.1$ (one at $z=1.3$)
- 9 quasars from $z=2.3-2.8$ (one at $z=6.4$)
- 2 Lyman Break Galaxies (LBGs) at z=2.7-3.1
- References for CO data:
- SMGs: Genzel et al. 2003, Downes \& Solomon 2003, Sheth et al. 2004, Greve et al. 2005, Tacconi et al. 2006, lono et al. 2006
- Quasars: Downes et al. 1995, Barvainis et al. 1998, Guilloteau et al. 1999, Weiss et al. 2003, Walter et al. 2004, Beelin et al. 2004, Hainline et al. 2004, Solomon \& van den Bout 2005
- LBGS: Baker et al. 2004, Coppin et al. 2007

