
Star Formation in the Galactic Center Region

Farhad Yusef-Zadeh Northwestern University

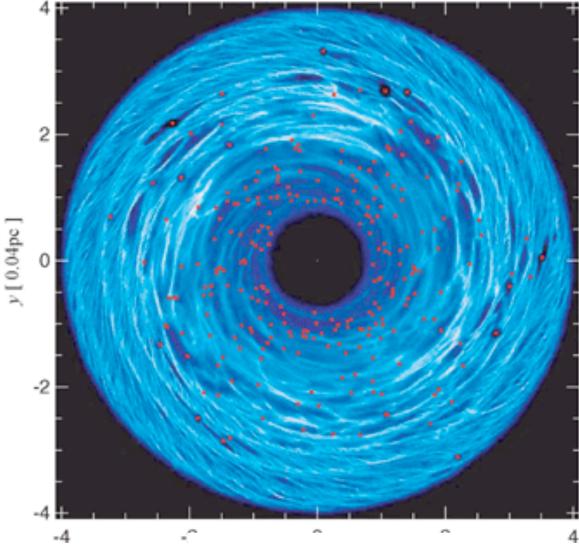
Stellar Disk 0.03–0.3 pc

- Majority of early type stars in one or two disks < 0.5pc
- Disks have moderate thickness (h/r~0.1)
- Stars have low-tohigh eccentricities
- Coeval disks t=(6+/-2)x10⁶ yrs
- Disk mass < 10⁴
 solar mass

Levin and Beloborodov 2003; Genzel et al. 2003; Lu et al. 2008; Paumard et al. 2006

z (arcsec)

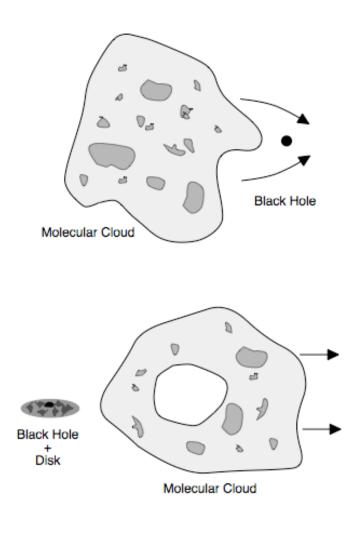
Surprise!


Young stars so close to Sgr A*? (The paradox of youth) Why formed in counter-rotating disks?

Two scenarios of star formation:

- 1. Migration: massive clusters will undergo dynamical friction (Gerhard 2001)
 - dynamical friction is too long
 - no massive stars beyond 0.5pc
 - disordered stellar orbits
- 2. In-situ: massive disk becomes Jeans unstable (preferred)

Stellar Disk Formation


- In-situ star formation ٠
- Simulation of star ٠ formation in an accretion disk: efficent
- Snapshot of disk column ٠ density
- Red spots: stars > 3 solar mass
- Questions:
 - How do these disks get in there in the first place?
 - What about eccentric orbits?
 - The trajectory of a compact cloud less than 1pc at 100 km/s: highly rare
 - Compact cloud has no way of shedding its angular momentum

Nayakshin, Cuadra and Springel 2007

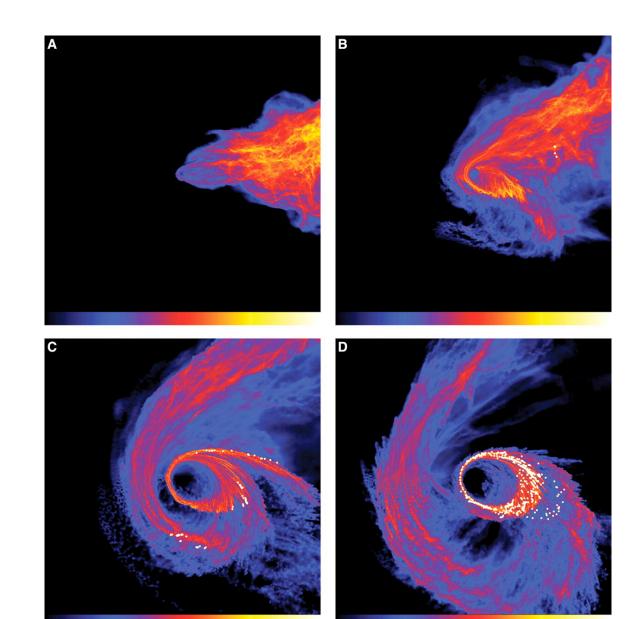
Molecular Cloud Engulfs Sgr A*

- Bondi-Hoyle: Inhomogeneous, extended cloud gravitationally focused
- Capture radius: 3pc
- 70% of angular momentum cancels out as r=3pc circularizes to 0.3pc
- Q<1 as the disk self-gravitates
- Cloud-cloud collisions: The circumnuclear ring (few pcs)

Wardle and FYZ (2008)

Mass-Radius Relationship

$$\begin{split} Q &= \frac{c_s \Omega}{\pi G \Sigma_d} = 0.11 \, T_{100}^{1/2} \, \frac{\lambda \, v_{100}^3}{\kappa N_{24}} \\ \mathbf{Q} &= \tau_{\text{dynamical}} \, / \, \tau_{\text{shear}} \end{split}$$

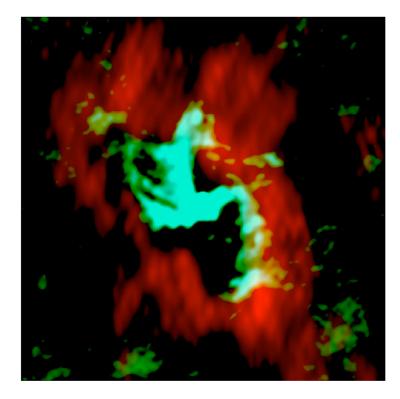

٠

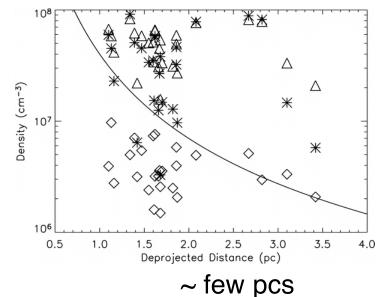
Disk Mass (M_☉) 10⁶ 104 105 10 λ : Fraction of angular 0.1 momentum retained by the captured cloud ~0.3 stellar disk Disk Radius (pc) Q = 0.1Q = 0.01Q = 1v₁₀₀ / ک κ : ratio of captured mass to accreted mass ~1 Stars circularize with c/nuclear ring a range of 10 eccentricties 0.1 10 κ N₂₄ / V⁴₁₀₀

Wardle and FYZ (2008)

SPH Simulations: Formation of an Eccentric Disk

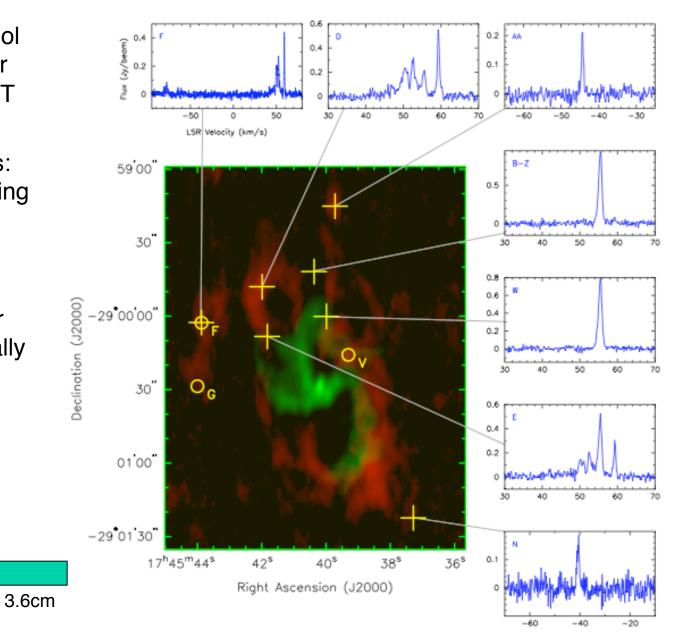
- Plunging of a 10⁴ solar mass molecular cloud onto a 10⁶ BH
- A: size 1.5 pc, t=3.2x10⁴ yrs
- B: size 1pc, t=4.2x10⁴ yrs
- C: size 0.5 pc, t=4.7x10⁴ yrs
- D: size 0.5 pc, t=5.1x10⁴ yrs
- Eccentric orbits


Molecular Ring Orbiting Sgr A*


- Kinematics: rotation with v~110 km/s
- Velocity dispersion ~27 km/s; Disturbed motion
- 26 dense cores
- size ~ 0.3x0.2 pc
- Velocity dispersion ~27 km/s
- Mass ~ 1.6x10⁴ Msolar
- Evidence for star formation?

- Molecular Ring -HCN(1-0) line
- Sgr A West

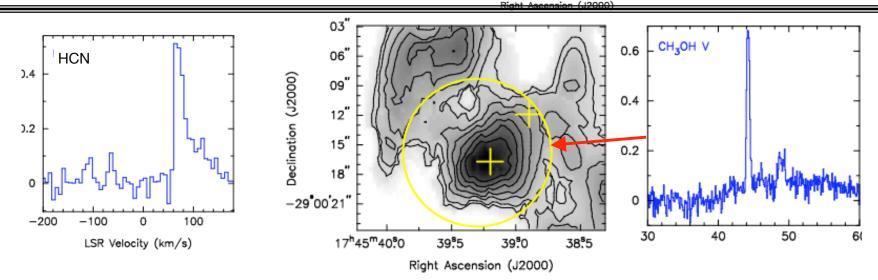
-Free-free emission at 1.3cm

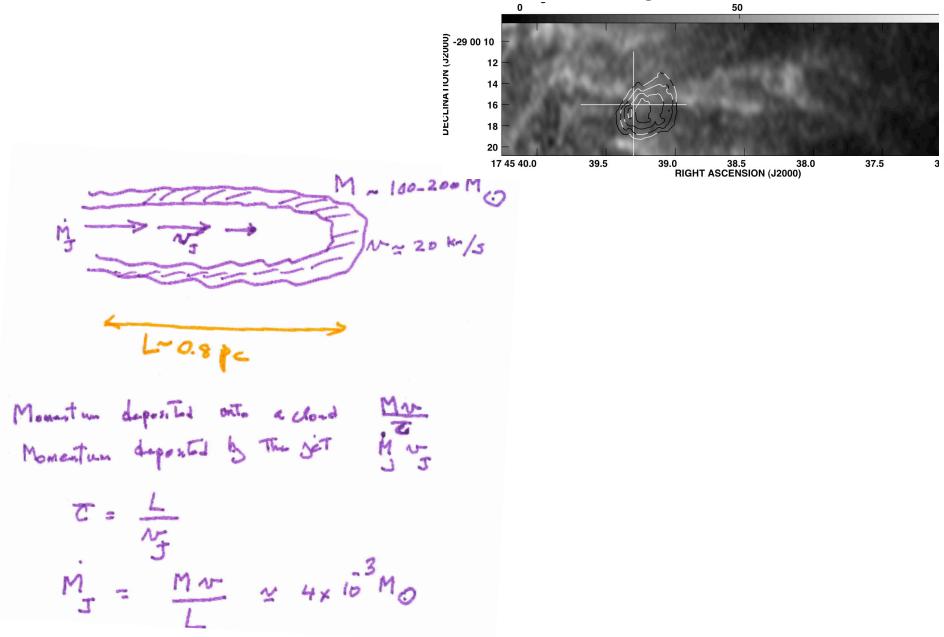


Molecular Ring: H₂O and CH₃OH Emission

Detection of methanol and water maser emission with GBT

- Methanol Masers: signposts of on-going massive star formation
- Interstellar water masers: collisionally pumped at high densities


HCN


Molecular Ring: CH_3OH , HCN, SiO, H_2

- CH₃OH:
 - Clump d_{projected} ~0.6 pc
- Narrow line:
 - V~ 44 km/s & FWHM~ 0.35 km/s
 - Collisionally excited
- Broad line:
 - FWHM~ 25 km/s
- HCN:
 - A red-shifted broad wing
- SiO:
 - Broad line emission

8 CH₃OH G (VLA) CH₃OH G (GBT) 3 Flux (Jy/beam) b 4 0 6 2 1 ഹവ П 0 0 30 40 50 70 30 40 50 60 70 60 LSR velocity (km/s) HCN G (OVRO) 0.6 16" SiO 0.4 20" 0.2 0 50 100 150 0 36 20 40 Kilo VELO-LSR 17^h45^m44.644.4 44.2 44.0 43.8 43.6 43.4 43.2

Protostellar Outflow in the Molecular Ring

Star Formation in the Nuclear Disk

Jeans Mass

$$M_J \approx 0.53 \left(rac{T}{10 \,\mathrm{K}}
ight)^{3/2} \left(rac{n_{\mathrm{H}}}{10^6 \,\mathrm{cm}^{-3}}
ight)^{-1/2} M_{\odot}$$

- $M_J \sim 11 M_{solar}$ when T~75K : consistent with massive stellar clusters
- Ambipolar diffusion time scale

$$t_{\rm AD} = \frac{R}{v_d} \approx 8 \left(\frac{x_e}{10^{-8}}\right) \,\,{\rm Myr}$$

- High ionization fraction: x_e Suppression of star formation
- Cosmic ray ionization rate in the nuclear disk is high by 1-2 orders of magnitude

 H_{3}^{+} and $H_{3}O^{+}$ measurements (Oka et al. 2005; van der Tak et al. 2006) 6.4 KeV K α line emission from neutral Fe (FYZ et al. 2006)

ALMA opportunities

- Great uv coverage: wide range of angular scales in the GC
- Spectral imaging and mosaics for extended sources
- Chemistry of gas: PDR vs XDR
 star formation
- Zeeman measerements: High B vs. Low B
- low-mass star formation: HH objects
- Band 1 is a must: ionized stellar winds+synchrotron

Conclusions

- Star Formation in the Nuclear Disk: Q < 1 and Q > 1
 - Stellar Disks and the molecular Ring:
 - In-situ star formation
 - Clouds passing through a strong potential
 - The ring is young
 - Star formation is being fed by clouds
 - A young population of YSO candidates
 - SFR ~ 0.08 M_{solar} /yr