Fragmentation in (Pre)cluster Forming Regions

> Qizhou Zhang Harvard-Smithsonian Center for Astrophysics

> Collaborators: Yang Wang, Gemma Busquet Thushara Pillai, Jill Rathborne

Questions:

What is the physical and chemical state in (pre) massive star/cluster forming clouds?
What drives the structure formation: Thermal fragmentation or other processes?

What drives the initial structure in cluster formation? Competitive Accretion

$$M_{J} = \left(\frac{\pi C_{s}^{2}}{G}\right)^{3/2} \rho_{o}^{-1/2} \Longrightarrow 0.4Msun$$

Bonnell et al. 2001, 2004

Monolithic Collapse (Tan & McKee 2004)

Stellar heating increase M_J Krumholz et al. 2007, 08

$$M_{core} \sim M_*$$

Turbulent Fragmentation Padoan et al. 2004

Cluster potential

Sept. 25-27, 2008

Wang, Zhang, Pillai, Wyrowski, Wu 2008 Wang, Zhang, Rathborne, Jackson, Wu 2006 Sept. 25-27, 2008 ALMA Workshop

T vs. NH₃ flux density

Sept. 25-27, 2008

NH₃ Line width Distribution in G28

Northern active region

Southern quiescent region

 $\Delta V (km/s)$

Sept. 25-27, 2008

Line width vs NH₃ flux density in G28

Northern active region P2

Southern quiescent region P1

Flux density

Sept. 25-27, 2008

Fragmentation in P1

Zhang, Wang, Pillai, Rathborne 2008

Sept. 25-27, 2008

Density Structures

$$T \propto r^{-a}, \rho \propto r^{-b} \Rightarrow F \propto r^{-(a+b-1)}$$
$$F(r) \Leftrightarrow f(U, V) \propto S^{a+b-3}$$

Sept. 25-27, 2008

Depletion/Deuteration

At Low T < 20K $H_3^+ + HD \leftrightarrow H_2D^+ + H_2 + \Delta E$ Secondary Deuteration $NH_3 + H_2D^+ \rightarrow ... \rightarrow NH_2D + H$

Sept. 25-27, 2008

G28.34+0.06: Depletion

Sept. 25-27, 2008

IRDC G28.53: Depletion IRAM 30m Spectra

Rathborne, Jackson, Zhang, Simon 2008

Sept. 25-27, 2008

First Detection of H₂D+ in a massive pre-stellar core

Summary

- Evidence for turbulence dissipation: Linewidths decrease toward the center of the quiescent cores toward G28-P1;
- Structures revealed at resolutions < the Jeans length, but with fragments' mass >> thermal Jeans mass → turbulent/magnetic support (?)
 Heavy depletion/Deuteration at the early stage

How Can ALMA Help?

High sensitivity/High resolution imaging in both spectral line (N2H+, N2D+, and dust continuum): Best frequency band balancing mass sensitivity and weather is probably 345 GHz band: 1hr on source (2.3mm PWV) leads to 1-sigma of 0.015 Msun for sources at a distance of 4kpc! → Large surveys of IRDCs

Dust polarization/Zeeman effect in molecular lines
B field

Sept. 25-27, 2008

Related Posters

Hatchell: P14; Liu: P29; Pillai: P35; Reid: P37; Plume: P36; Swift: P46