

Refactoring and Expanding MATLAB MarsIce Modeling
Software

Document Management Information

• Revision Number: 1.0
• Revision Release Date: 2020-8-23
• Purpose of Revision: Final draft.
• Scope of Revision: All sections of document.

Purpose and Scope

This document contains a brief description of the MarsIce software and the modifications
made to it during the summer of 2020. It also provides instructions on the use of the software’s
key features.

How This Document Is Organized

This document contains three primary sections: Architecture Background, Views and Reference
Materials. The Architecture Background section contains the following subsections to provide a
detailed description of the software and explanations of the changes made to the system. The
Problem Background subsection describes the original state of the MarsIce software and the
problems relating to its rigidness. The Goals and Context subsection details the objectives that
were planned for completion during the summer of 2020 and the reasoning behind them. The
Solution Background describes the current state of the MarsIce software and the changes we
made to the system to meet the goals outlined in the previous section. The Requirements
Coverage highlights the primary stakeholders and their relevant use cases with the
corresponding View.

The Views section contains visual representations of the current MarsIce software which
outline the current layout of the system.

The User Guide section goes into the specifics on how users can utilize the functionality of the
current MarsIce software to generate data using existing soil types in addition to adding new
soil types or modifying the properties of an existing type.

The References section contains citations of the resources used in this project.

William Paul Armentrout
Daniel Johnson, Advised by Hanna Sizemore

Architecture Background

Problem Background

The original MarsIce software was developed in
2010 (Sizemore et al., 2015) using MATLAB to model
the freezing behavior of water in a variety of soil types
in Martian conditions. The software generated an
assortment of output data files and figures, including
the burial depth of ice with respect to changing Mars
orbit parameters, ice temperature, liquid water
fraction, and the heave rate or ice velocity over time.

The software was designed to aid understanding of
how massive ice forms on Mars, motivated by Mars
Odyssey Neutron Spectrometer and Phoenix lander
observations indicating that subsurface ice volume
was greater than expected for ice originating from
vapor diffusion. MarsIce was designed to be run in
concert with existing Mars climate models to search for
conditions under which ice lenses could form and to
estimate the rate of ice lens growth. Results from
MarsIce can be used to determine if frost heave
commonly occurs on Mars, the volume of clean ice
produced at a given location, and whether other
phenomena are more likely responsible for observed
excess ice. The software package also has
applications in habitability studies.

However, there were significant design problems with the original MarsIce software. Some of
the software outputs were left over from debugging and were no longer needed. In addition, the
software itself was very rigid, requiring changing a large portion of the source code in order to
modify a soil type or salt doping. Recent significant progress in laboratory studies of Martian soil
freezing and deliquescent salts have necessitated updates to the model. In order to expand
upon the functionality of the MarsIce software, we had to refactor the existing codebase.

Goals and Context

The primary objectives during the summer of 2020 was to refactor the existing codebase for
future expansions and to expand the original code’s functionality to include new soil types with
variable salt doping. The code also lacked a formal testing framework.

Solution Background

Approaches

Our work done on the MarsIce software can be broken down into the following sections. The
sections are ordered according to when each section was completed in the project. This section
describes the approaches in detail, while the User Guide section contains the information for
how to use the new features that were added.

Refactored legacy code to utilize Object-Oriented Design

Before modifying or adding to the functionality of the project, we had to refactor the software to
reduce the complexity and risk of building onto the existing MarsIce software. Since MATLAB
supports Object-Oriented Design, we were able to use Objects to clean up a large amount of
code duplication. We also cleaned up the messiest code -- i.e., code that contained many “bad
smells,” (Fowler, 2018). For a deeper explanation of the various types of bad code smells,
details are described in Martin Fowler’s book Refactoring: Improving the design of existing
code. We refactored until the software was in a state in which we could write automated
regression tests to ensure consistency of outputs moving forward.

Automated testing

Once the software was in a testable state, we utilized MATLAB’s unit testing functionality to
create an automated testing harness to ensure the program would behave consistently after
modifications. Once the tests were in place, we could make further modifications to the system
without risking accidentally modifying the program’s behavior.

Developing the tests highlighted a key issue with MATLAB’s ode15s solver: when the same
software version was run on different computers, the outputs of the solver were different. Our
first attempt at solving this issue was to use an error tolerance in the tests’ assertion statements,
as the discrepancies at first glance looked small enough to be attributed to rounding errors. The
main issue that arose from this approach is that the automated tests would be unable to detect
a slight change in the MarsIce outputs as long as the change is within the tolerance. The
whole purpose of the tests is to detect any variation in the outputs, so we searched for another
approach.

We experimented with alternatives to the ode15s solver to see if another solver could provide
consistent results on different computers, however ode15s was the only one to successfully
complete its calculations within a reasonable time frame. All other MATLAB solvers either took
much longer to run into the same problem of producing different results over different computers
or caused MATLAB to freeze.

The approach that we ultimately adopted was to utilize the mocking feature in MATLAB to mock
the solver. This is a viable approach because the tests are testing the MarsIce software, not
the MATLAB solver code. To implement the mocking, we saved a standard set of the expected
inputs and outputs. The tests check to ensure the solver is called with the specific inputs and
then provides the specific solver outputs for the rest of the MarsIce program to use. This
standardizes the discrepancy across different computers, as each would be expecting the same
specific input and providing the same specific output.

Extensible soil types and centralized soil properties

In order to add additional soil types, we had to construct an appropriate framework. In the
original MarsIce code, the soil properties were scattered across the software files, making
modifying or adding new soils high risk and difficult. Utilizing Object-Oriented Design, we
changed the code structure so each soil type became its own class with a DirtType
superclass. We were able to completely remove a large amount of code duplication involving
soil name if/else chains by making a single call to a DirtType method. In addition, we stored
soil specific properties as fields of their respective class, centralizing the soil properties. New
soil types could be added by creating a new DirtType subclass and implementing
DirtType ’s abstract methods and adding the option to choose the new class in DirtType ’s
getType method, which is responsible for returning the soil type the user specified.

Standardized file naming

As we expanded the tests to cover more soil types, the amount of output files generated by
MarsIce added excessive clutter to the root directory of the project. Since the soil properties
were now centralized, we utilized the same structure to save output files. Each output file now is
saved in the outputs folder instead of the root directory and all files have the same suffix
structure containing the input parameters so the user knows what parameters created each file.
We then refactored the automated tests to make use of the standardized names, resulting in the
removal of a large amount of unnecessary code duplication.

Two new soil types (mminbeta and mmaxbeta)

Once we created the framework for adding new soils, the addition of two soil types was now
possible. Our first approach was to create a new soil type class for each soil, however we
discovered it would add excessive code bloat as these new types were variations of the Phoenix
soil type. It made more sense to make soil types able to take a subsoil name parameter, with
the side benefit of making the soil type identifiers more human readable. Now, the
DirtPhoenix class contains a map object that maps the subsoil name to the specific
parameters of that subsoil.

Another upgrade we completed was removing dtf as an input parameter, as the subsoil
parameter replaced its functionality while making the code more readable. The dtf parameter
previously determined the specific parameters of the Phoenix soil, which is no longer needed

with the subsoil parameter. An example of one of the uses of the subsoil parameter is shown
below. The supported subsoil values are mapped to their specific properties. Based on the
value of subsoil imputed to the program, the corresponding properties are retrieved.

In addition, a large amount of if/else statements based on dtf were replaced with accessing a
map using subsoil as the key, as shown above. The current parameters used in each
DirtType subclass are shown in the Class Diagram in the Views section.

Improved viscosity calculation

Note that the viscosity calculation improvement is still a work in progress. The original viscosity
calculation function etaval assumed that ice formed from pure water. However, since the
software can now support salty solutions, we began to upgrade the viscosity calculations. We
added the function conc to calculate the salt concentration in the liquid water. The
concentration is passed to the upgraded etaval to solve for the viscosity of the specified salt
solution. The type of salt is accessed from DirtType using its getSaltType() method.
However, the new equation we added to etaval to handle the salty solutions produced
questionable outputs for one salt species. This equation was provided by an outside
collaborator, Aaron Zent, based on fits to new laboratory data. Zent is currently investigating
alternative functions to better fit the raw data. We decided to revert back to using the pure water
model until this issue can be resolved.

The addition of the conc function and the structural changes to etaval that allow it to access
information on salt via DirtType provide a framework that can be applied to the calculation of
other parameters, such as permeability, as new laboratory data becomes available in the future.

Requirements Coverage

The primary stakeholders of the project are Developers and Scientists. Developers would be
those who would be expanding or modifying the MarsIce functionality and the Scientists would
be those running MarsIce with various input parameters but not modifying the source code.

Stakeholder(s) Use Case Related View

Developer and Scientist Run lens_survey_hgs Project File Structure

Developer Run automated tests Sequence Diagram

Developer Edit a property of a soil Class Diagram

Developer Add new subsoils Class Diagram

Developer Add new soil type Class Diagram

Developer Add new test Project File Structure

Developer Modify source code Sequence Diagram

Views
Sequence Diagram

Primary Presentation

Element Catalog

● lens_survey_hgs - the “Main” of the program
● Unix - A unix command being sent in MATLAB
● Outputs - the outputs folder in the Project File Structure
● DirtType - the superclass for soil types
● loadMarsIce - loads temperature and depth data generated from the work executable
● MarsIce - primary data processing function.
● ode15solver - uses ode15s to solve a partial differential equation for calculating

temperature. When lens_survey_hgs is run from the testing framework, a mocked
instance of ode15solver is passed in.

● sival - returns ice saturation.
● lens_init - extended data processing function
● growthrates - calculates the rate of growth of ice in the specified soil
● krat - returns permeability ratio for viscosity calculations
● conc - returns the concentration of salt concentration for viscosity calculations
● etaval - handles viscosity calculations
● temp_comp - compares the calculated depth of ice with respect to temperature over

time to analytic models (Zent 2008, Mellon et al. 2004)

● growth_analysis - plots the results of growthrates
● survey_summary - collection of data calculated for a specific age

Design Background

The sequence diagram shows the major calls between the software files in the MarsIce project
when lens_survey_hgs is called. The overall sequence of method calls is mostly preserved from
the original MarsIce code. The major change to the call sequence was the addition of
DirtType . Most of the code duplication and large if/else chains in the original software were
replaced by method calls to DirtType shown in the diagram.

Class Diagram

Primary Presentation

Element Catalog

● Handle - base MATLAB object
● DirtType - soil type abstract superclass. All soil type classes extend this class and

implement its abstract methods. DirtType cannot be instantiated since it is an abstract
class

● DirtPhoenix - soil type class that models Martian soils at the Phoenix landing site.
Currently the only soil type class that uses the subsoil parameter in its methods.

● DirtTomokomaiClay - soil type class that models Tomokomai clay.
● DirtChenaSilt - soil type class that models Chena silt.
● DirtInuvikClay - soil type class that models Inuvik clay.
● Italicized lines - abstract methods that any subclass must implement
● Underlined lines - static methods that can be called anywhere without an instance of the

class

Design Background

The diagram serves to show the centralized soil type properties and what creating a new soil
type class would require. In order to create new soil types, a new class would have to be
created that extends DirtType . In order to be created correctly, the new class would have to
implement DirtType ’s abstract methods and contain the properties that the existing
subclasses share. Note that a future improvement would be to move the shared properties into
DirtType , however this will involve working with MATLAB’s obscure functionality in dealing
with accessing superclass properties from subclasses.

Project File Structure

Primary Presentation

Element Catalog

● afteroevals - contains .mat files containing the values of all variables after the
ode15s solver is called. These files can be used to set the standard values the mocked
solver uses in the automated tests

● misc - contains diagram images and plantuml source code
● outputs - contains all files outputted by MarsIce with the input parameters appended

to their name for easy recognition
● test_expected_outputs - contains output files that the automated tests expect

MarsIce to output
● test_inputs - contains input files, one for each automated test
● inputMarsIce.txt (not shown) - the default file lens_survey_hgs loads input

parameters from
● lens_survey_hgs.m (not shown) - the “Main” of the program
● temperatureTests.m (not shown) - run this file to run all the automated tests

Design Background

The structure of how the project directory is organized is used to help locate specific files.

User Guide

Running lens_survey_hgs

The lens_survey_hgs.m file is what should be run to operate the MarsIce program. By
default, it accepts no arguments, pulling input parameters from the inputMarsIce.txt file in
the root directory. Other input files can be specified by calling lens_survey_hgs.m with two
arguments. The first argument being the file path and the second being the file name. Lastly, a
third argument can be supplied in the form of an ode15solver . This is used in the testing
framework so the tests can supply the mocked solver to the program. All output files are saved
in the outputs folder.

Running automated tests

Running the function temperatureTests.m runs all the automated tests. The tests require no
arguments to run. Running all tests can be time consuming depending on the computer. The
outputs of the tests should look similar to the test outputs shown below, which were generated
on Maxwell, a linux server at GBO with 2.4 GHz Intel Xeon processors:

Complete testing consists of running twelve individual 5-sol (Mars-day) simulations. All tests run
for current Mars climate conditions with Ls = 145° and latitude = 70° N (specified in input files
stored in the test_inputs directory). Testing time on a MacBook Pro with 2.9 GHz Intel Core
i7 processor was slightly faster than on Maxwell:

Running the same set of tests on a Linux virtual machine with a 2.9 GHz Intel Core i7-7820HQ
processor is significantly slower:

Editing soil properties

Each soil property is stored in the respective soil type class, e.g. DirtPhoenix . Some of the
properties defined in the soil type classes are given default values, however they are updated to
reflect the values of the input parameters if provided.

Adding new subsoils

Adding a new subsoil value requires adding a map if the soil type does not contain one
already. The map uses the subsoil name as the key to map to its respective subsoil
properties. Extending a map to contain a new subsoil only requires the addition of a new line of
code providing the properties of the new subsoil.

Adding new soil types

Adding a new soil type requires the creation of a new MATLAB file. The new file must consist of
a class that extends DirtType and implements the methods specified as abstract in
DirtType.m , as well as contain the same properties as the other soil type classes (see the
properties section at the top of DirtPhoenix.m for an example of the required properties).
Lastly, the new soil type class must be added to DirtType ’s getType method by assigning it
a soilnum that isn’t already used in the method.

Adding new tests

The testing framework has been condensed to run every test for every input. To run all tests for
a new set of input parameters, add a new test method following the format of the existing tests
by specifying the input parameters and calling the test frame method. In addition, standard
output files and a standard afterode mat file must be generated by running
lens_survey_hgs with the input parameters first, then copied into the
test_expected_outputs folder. The input file used must be copied into the test_inputs
folder and named using the same format as the existing input test files. When
temperatureTests.m is run, the new test should execute along with the existing tests. Note
that tests can be commented out to prevent them from running.

References

Sizemore, H.G., A. P. Zent, & A. W. Rempel (2015). Initiation and growth of martian ice lenses.

Icarus, 251, 191-210. http://dx.doi.org/10.1016/j.icarus.2014.04.013

Sizemore, H. G. (2016). Frost Heave on Mars: Rate Limiting Boundary Conditions and the Role

of Salts. Proposal submitted to NASA ROSES solicitation NNH16ZDA001N-SSW; award

number 80NSSC18K0012.

Paul Williamson (2020). Strategy Design Pattern in MATLAB 2008b

(https://www.mathworks.com/MATLABcentral/fileexchange/22193-strategy-design-p

attern-in-MATLAB-2008b), MATLAB Central File Exchange. Retrieved July 20, 2020.

(n.d.). Testing Frameworks

(https://www.mathworks.com/help/MATLAB/MATLAB-unit-test-framework.html?s_tid

=CRUX_lftnav), Mathworks Help Center. Retrieved July 20, 2020

Fowler, M. (2018). Chapter 3. In Refactoring: Improving the design of existing code.

Addison-Wesley.

http://dx.doi.org/10.1016/j.icarus.2014.04.013
https://www.mathworks.com/matlabcentral/fileexchange/22193-strategy-design-pattern-in-matlab-2008b
https://www.mathworks.com/matlabcentral/fileexchange/22193-strategy-design-pattern-in-matlab-2008b
https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html?s_tid=CRUX_lftnav

