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ABSTRACT

Before a radio image can be reconstructed from interferometric data, it must undergo calibration.

The initial calibration of the data is done using a known radio source, chosen by eye based on location

and shape of the source. We can avoid this introduction of human error into the calibration process by

analyzing the quality of a calibrating source mathematically. To do so, we introduce a scoring system

for the quality of a calibrator based on its divergence from an ideal point source. This divergence is

calculated as the distance in a coordinate space of made of average calculated errors in the visibilities

of a source, giving a value for how point-like the source is. To further refine this into a calibrator

score, this is combined with a system of weights and cut-offs to enhance the differentiation between

known good calibrators and poor calibrators. The system tested analyzes potential calibrators in

the VLA S-band, many of which are known calibrators in the VLA L-band and C-band. Using the

known calibrator classifications to predict the likely classification in S-band, we demonstrate that

this scoring system can effectively classify calibrators through direct analysis of observations of a source.

1. BACKGROUND

Through basic optics, we know the resolution of a tele-

scope is related to the wavelength λ being observed and

the diameter D of aperture. Initially determined using

visible light, this relation extends to all wavelengths.

θ ≈ 1.22
λ

D
(1)

The telescope’s resolution is not an impractical limiting

issue with optical telescopes—a two meter aperture has

roughly 0.07′′ of resolution for green light. This is not

the case at radio wavelengths. For that same resolu-

tion at a wavelength of 2 mm, you would need a tele-

scope 7.2 km in diameter. Building a physical telescope

of that size is a practical and engineering impossibility.

However, we can build a virtual telescope of that size by

combining the observations of many smaller telescopes

using interferometry. This process does come with its

own challenges; here, we will be examining calibration.

1.1. Interferometry
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The most basic interferometer is made up of two aper-

tures. In the case of radio astronomy, that would be

two focused antennas, a variant of the Michelson in-

terferometer. In this interferometer, two telescopes are

separated in space, resulting in slightly different path

lengths from the source to the antenna. Because of this

differing path length, interference occurs, and combining

the signal from the two antennas results in a diffraction

pattern. The interferometer measures a projection of

the intensity from the sky into one dimension. By using

an inverse Fourier transform, the image can be recon-

structed from the signal detected by the interferometer.

The basic Michelson interferometer is most useful now

as an explanatory case. In theory, you can repeat this

baseline process for as many antennas as you can con-

nect together; in practice, this is limited by a combi-

nation of cost, computational capability, and physical

distance between the telescopes. This combination of

antennas into many interferometric baselines is the ba-

sis for many radio observatories today, such as the Jan-

sky Very Large Array in Socorro County, New Mexico;

the Atacama Large Millimeter Array in Chile; and the

planned Square Kilometer Array in South Africa. To

properly create images from sources with these observa-
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tories, we must calibrate the measurement with a known

source (Thompson et al. 2017).

1.2. Calibration

When observing, our telescope cannot simply measure

radiation from a target as it was emitted. The telescope

has to measure the radiation on Earth with real materi-

als, with all of the obstruction and distance that comes

with it. The goal of calibration is to address interference

that comes from the atmosphere and from the radio an-

tennas themselves (Thompson et al. 2017). Our atmo-

sphere is complicated; it is a mixture of various gasses

that vary in temperature and density throughout–not

to mention the dust and clouds–that is constantly ex-

periencing turbulent motion. The antennas themselves

are also a source of interference; there is of course their

own blackbody radiation, but more importantly the an-

tennas are electronic. By simply changing the currents

flowing within the antenna, radio waves are produced

by the antenna (Jackson 1998). The exact interference

recorded is depends on the locations of the antennas, the

antennas themselves, and on how they are paired, so we

need to apply calibration to the visibility data, not the

assembled image (Thompson et al. 2017).

1.2.1. Calibration Process

When calibrating, we can break the process into two

time domains. The errors from long-term stable sources

are not the focus here; these errors can be corrected us-

ing any unresolved radio source, near our target or not,

when the baselines are arranged. This includes things

such as antenna baseline positions, antenna pointing cor-

rections, and electronic delays (Thompson et al. 2017).

We are more concerned with the errors resulting from

short-term changes. These can either calculated–such as

atmospheric attenuation or gravitational deformation of

the antenna–or need to monitored. Some of these effects

can be directly monitored with instruments on the an-

tenna, such as system noise or atmospheric delay, and

can be corrected with that data. Our main concern is

the short-term variable errors that cannot be monitored

from the antenna–the routine corrections. These routine

corrections account for sources of error such as atmo-

spheric conditions and the phase and amplitude varia-

tions due to the antenna’s electronics (Fomalont & Per-

ley 1999). These require the observation of a calibration

source, a known radio source near our target that we

can use to determine (or at least get a good estimate

of) the interference from indirectly monitored conditions

Thompson et al. (2017).

To determine the correction needed to our target

source, we will have to make a comparison to the calibra-

tor source of known flux density. Assume we have some

uncalibrated visibility from antennas m and n, with a

corresponding gainGmn(t) and the true visibility V(u, v)

we need to determine,

[V(u, v)]uncal = Gmn(t)V(u, v) (2)

and a calibrator visibility with its own gain [Gmn]c(t)

and source visibility Sc

Vc(u, v) = [Gmn]c(t)Sc. (3)

In theory, the gains should depend on the baseline dis-

tances u and v, but if the target is small enough we

can assume atmospheric interference is more-or-less uni-

form, making this dependence negligible. To calibrate

the target, we need to determine the antenna gain func-

tion Gmn(t). While not exactly the same, Gmn(t) well

approximates the gain for the calibrator as long as it is

close to our target.

Vc(u, v) u Gmn(t)Sc. (4)

If we know the calibrator flux Sc independently, we can

determine the antenna gain; determining Sc confidently

is easier with stronger sources as the calibration target

will dominate the signal. With some quick algebra, the

calibrated visibility is

V(u, v) =
[V(u, v)]uncal

Gmn(t)
u [V(u, v)]uncal

[
Sc
Vc

]
. (5)

The gain Gmn(t) is a complex-valued function, so we

must be careful with our algebra; more detail will follow

in the next paragraph. To reiterate, this comes with

two approximations–we assume the calibrator is close

the target, and that it is a sufficiently strong source. To

ensure that approximation is valid, we will have to pick

an appropriate calibrator when reducing data (Thomp-

son et al. 2017).

In general, we can write the gain Gmn as a product

of the complex gains of the individual baselines and an-

tennas

Gmn(t) = gm(t)g∗n(t)gmn(t) (6)

where each individual gain is a complex function de-

scribed by an amplitude and a phase

gj(t) = aj(t)e
iφj(t). (7)

and we note that an asterisk ‘∗’ denotes the complex

conjugate of a function. By calibrating the antenna gain

Gmn(t), we will simultaneously correct the amplitude

and phase variations of the antenna. With the definition
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given in Eq. 7, we can define an amplitude and phase

term for the total gain Gmn ≡ Amne−iΦmn(t).

Amn = am(t)an(t)amn(t) (8)

Φmn = φm(t)− φn(t) + φmn(t) (9)

Combining these definitions of the amplitude and phase

with the true visibility from Eq. 5, we can find the

true amplitude and flux in terms of the uncalibrated

amplitude and flux.

Amn =
[Amn]uncal

Sc
(10)

Φmn = [Φmn]uncal = φm − φn + φmn (11)

We are still missing one constraint, but we can solve that

by introducing ‘closure’. As long as our source is suffi-

ciently point-like, the baseline phase φmn will approach

zero, and the baseline amplitude amn will approach 1.

This reduces our number of unknowns and makes it pos-

sible to calibrate the combination of antennas m and n

(Fomalont & Perley 1999).

1.2.2. Selecting Calibrating Sources

When selecting a calibrator we want a source that is

strong enough to have low uncertainty in the calibrator

flux and close enough to the target that the gain function

is well approximated. Close to the target is fairly self

explanatory; a calibrator is closer to a target if their an-

gular separation is smaller1. Lowering uncertainty in the

calibrator flux has two approaches–we can either have a

source that is closer to be unresolved (a point source)

or we can have a source that is simply brighter. Point

sources are ideal because their theoretical appearance

is very well known, so correspondingly our confidence in

the flux distribution from any point goes down as we are

able to measure structure (Fomalont & Perley 1999).

When selecting a calibrator we try to find a good com-

promise between distance from the target and our con-

fidence in the calibrator flux. In practice, potential cali-

brators are categorized based on their estimated closure

error, the divergence from a complex baseline gain of 1

(see eq. 6, in the case of a baseline j = mn); this diver-

gence effectively characterizes how point-like a source is.

These categories can be seen in Table 1. With that, the

flux of the calibrator source, and the position in the sky

we can roughly judge how good of a calibrator something

will be.

1 Close may be self explanatory, but sufficiently close is more com-
plicated. This depends on factors such as telescope resolution
and bandwidth choice.

2. SCORING OF CALIBRATORS

When an observer is choosing a calibrator for their ob-

servations, they know the category, flux at chosen wave-

length, and the location in the sky. This gives a good

idea of the quality of a calibrator target, but it leaves

choosing between targets and what to prioritize up to

the observer because there are no longer hard numbers

associated with the closure error at this point. That

makes choosing a calibrator target subjective. As well,

with no numbers for comparison, calibrator selection has

to be done manually.

The new system we present here is a semi-relative scor-

ing system for calibrators. Instead of being categorized

based on how point-like they are through closure er-

ror, we calculate how similar the calibrator is to a point

source from the visibility observations. This similarity

score is then modified based on the relative flux of the

calibrators an observer wants scored and the number of

visibilities. A higher flux and greater visibilities than

average result in a higher score, while the opposite is

true for being below average.

This method has the benefit of being objective–there

is no ambiguity in which source has better score. This

immediately makes it easier for an observer to pick a

calibrator target manually. With a numerical value it

is also possible to automate the picking of calibration

targets, now that a computer has values to compare. Fi-

nally, as telescopes are upgraded, new calibrators have

to be found; this scoring system can automate the char-

acterization of new calibrators.

2.1. Theory

2.1.1. Point-like Scoring

From every observation of a radio source we measure

the following: real and imaginary parts of the visibilities,

the number of visibilities, and the amplitude of the vis-

ibilities. When analyzing these calibrators we have also

determined the fraction of those visibilities that have

good model solutions. With these measurements we

can characterize observed properties of each source by

finding the difference between the observed and model

values as well as by finding the ratio between observed

and model values. For an ideal point source these val-

ues should all be either 0 (in the case of the subtracted

values) or 1 (in the case of the divided values); so we

can characterize everything as their proximity to 0, the
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Table 1. Calibrator Closure Error Classification

Calibrator Classification Estimated Closure Error δ Recommended Use

P δ < 3% All Uses

S 3% < δ < 10% Phase and amplitude calibration only

W δ > 10% or Unknown Phase Calibration Only

C Confused Source Exceptional Use Only

X N/A Do Not Use

Note—This table describes calibrators based on their closure error classifications. This classifi-
cation must be made for source at a target wavelength and for the resolution of the telescope
baseline. For estimated errors under 3% (Type P) we essentially have point sources, for esti-
mated errors between 3 and 10% (Type S) we have minor structure, and for estimated errors
over 10% (Type W) we have significant structure in the source. Confused sources (Type C) are
not predictable enough for regular use and some sources are so unreliable at certain resolutions
and wavelengths they are classified as ’Do Not Use’.

divided values are subtracted by 1. These are:

SRE ≡ 〈[Re(V)]obsv. − [Re(V)]model〉 (12)

SIM ≡ 〈[Im(V)]obsv. − [Im(V)]model〉 (13)

SAMP ≡ 〈|Vobsv.| − |Vmodel|〉 (14)

SFRAC ≡
([

Found Soln.

Prdct. Soln.

]
Subtr. Data

− 1

)
(15)

DRE ≡
(
〈 [Re(V)]obsv.

[Re(V)]model
〉 − 1

)
(16)

DIM ≡
(
〈 [Im(V)]obsv.

[Im(V)]model
〉 − 1

)
(17)

DAMP ≡
(
〈 |Vobsv.|
|Vmodel|

〉 − 1

)
(18)

DFRAC ≡
([

Found Soln.

Prdct. Soln.

]
Dvd. Data

− 1

)
. (19)

We want to mathematically characterize how these val-

ues of a real calibrator diverge from the ideal point

source, in multiple ways. First, knowing what their ideal

values should be, we can measure how close a calibrator

is to the ideal point source by calculating a distance in an

appropriate ‘error space’, with locations on axes defined

by equations 12 through 19. Note that the ‘subtracted

values’ are sensitive to the flux of the source, so to avoid

weighting our score incorrectly, we will scale these val-

ues by dividing by the average flux of the source, 〈S〉.
Also, some of these values may be more important than

others in determining the quality of a source, so we will

multiply each term by a weighting value βi, which we

must determine experimentally. We will call this the

‘characteristic sub-score’.

CSS ≡ 1∑8
i=1 βi

[
β1

(
SRE

〈S〉

)2

+ β2

(
SIM

〈S〉

)2

+ β3

(
SAMP

〈S〉

)2

+ β4SFRAC2 + β5DRE2

+β6DIM2 + β7DAMP2 + β8DFRAC2
]1/2

(20)

Second, we can determine how reliable a given obser-

vation is. An ideal calibrator would have no error, so

we want the error on our real calibrators to be as low

as possible. That means we want as low of root-mean-

square or average values as possible for the values found

in equations 12 through 19. We will call this the ‘re-

liability sub-score’. Again, the ‘subtracted values’ are

sensitive to the flux of the source, so they are scaled

based on the average flux. Just as an equations 12–19,

each value can be weighted to change how much they

influence the final score, noted here by γi.

RSS ≡ 1∑8
i=1 γi

[
γ1

(
SRERMS

〈S〉

)2

+ γ2

(
SIMRMS

〈S〉

)2

+ γ3

(
SAMPRMS

〈S〉

)2

+ β4SFRAC2
Avg.

+ γ5DRE2
RMS + γ6DIM2

RMS

+ γ7DAMP2
RMS + γ8DFRAC2

Avg.

]1/2
(21)

For ease of understanding, we want a higher scored cal-

ibrator to be considered a better calibrator. We will

calculate the final score is calculated as the inverse of

the sum of the sub-scores, the inverse of the weighted

flux of the source, and one. A stronger flux inherently

improves a calibrator, so this must be taken into ac-

count. The one establishes the score range between zero
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and one, as opposed to zero and infinity. We introduce

three more scaling weights: δ1, δ2, and δ3 acting on the

CSS, RSS, and flux, respectively. And finally, we can

establish binary cut-off values αi for all of the compo-

nents of the score, where if that value does not reach the

defined minimum or exceeds the defined maximum, the

source is automatically discarded by setting the score to

zero.

Score ≡

(∏18
i=1 αi

)
(

1/
∑3
i=1 δi

)
(δ1CSS + δ2RSS + δ3/〈S〉) + 1

(22)

The values of each αi depend on the data set, and for

our data they are defined in the next section.

2.2. Implementation

While the score is in theory applicable to any source,

in practice we can determine if sources are not worth

the computational effort to calculate. By default, these

cut-off values are set so that all sources have scores cal-

culated, but values can be declared by the user. For

more information and the implementation of this sys-

tem, please see appendix A. For the data set being ex-

amined (see section 2.3), we have determined fourteen

cut-offs for usable calibrators, and four values with no

effective cut-off:

α1 =

{
0, |SRE

〈S〉 | > 0.32

1, |SRE
〈S〉 | ≤ 0.32

α2 =

{
0, SRERMS

〈S〉 > 2.75

1, SRERMS
〈S〉 ≤ 2.75

α3 =

{
0, |SIM〈S〉 | > 0.25

1, |SIM〈S〉 | ≤ 0.25
α4 =

{
0, SIMRMS

〈S〉 > 0.88

1, SIMRMS
〈S〉 ≤ 0.88

α5 =

{
0, |SAMP

〈S〉 | > 0.32

1, |SAMP
〈S〉 | ≤ 0.32

α6 =

{
0, SAMPRMS

〈S〉 > 1.33

1, SAMPRMS
〈S〉 ≤ 1.33

α7 =

{
0, SFRAC >∞
1, SFRAC <∞

α8 =

{
0, SFRACAVG >∞
1, SFRACAVG <∞

α9 =

{
0, |DRE| > 0.32

1, |DRE| ≤ 0.32
α10 =

{
0, DRERMS > 2.75

1, DRERMS ≤ 2.75

α11 =

{
0, |DIM| > 0.06

1, |DIM| ≤ 0.06
α12 =

{
0, DIMRMS > 0.94

1, DIMRMS ≤ 0.94

α13 =

{
0, DAMP > 0.786

1, DAMP ≤ 0.786
α14 =

{
0, DAMPRMS > 1.13

1, DAMPRMS ≤ 1.13

α15 =

{
0, |DFRAC| >∞
1, |DFRAC| <∞

α16 =

{
0, DFRACAVG >∞
1, DFRACAVG <∞

α17 =

{
0, NV < 100

1, NV > 100
α18 =

{
0, 〈S〉 < 0.05 Jy/bm

1, 〈S〉 ≥ 0.05 Jy/bm
.

For α7, α8, α15, and α16, we could not determine a

value above or below which all sources were poor cali-

brators, so they are set such that the expression is always

true for any value of SFRAC, SFRACAVG, DFRAC, or

DFRACAVG, respectively.

2.3. Data Set

The calibrators the VLA uses are documented on

the NRAO Science website, sorted based on the right

ascension of the source (Van Moorsel & Sjouwerman

2019). Data for the sources was provided by my advi-

sor, Loránt Sjouwerman, which were fitted to models us-

ing the Astronomical Image Processing System (AIPS)

(Bridle 2020). The calibrators used here are distributed

across the entire VLA sky, so there should no bias based

on location.

The data set at hand serves to verify that the scor-

ing system established in section 2.1 functions as in-

tended. That is, high flux, point-like sources should be

sorted near the top while low flux, resolved, or noise-

polluted sources should be sorted toward the bottom.

3358 sources are being ranked and sorted, so it would

be impractical to present them all in the order they ap-

pear here. The bulk properties of the data set can be

seen in the histograms given in Figures 3–6. For more

details on the calculation of these scores, see Appendix

A.

2.4. Execution

Note, that due to the structure of the scoring system,

determining weightings is not straight-forward. Empha-

sizing a score over others is an exercise in adjusting all

values, as a straight forward increase in the weight will

simply decrease the final score, and decreasing it to in-

crease the score can hide its impact. With nineteen dif-

ferent values to adjust, this problem is too complex to

be solved without simulation. For now, the weights used
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in this run are as follows:

β1 =
1

30
β2 =

1

8

β3 =
1

128
β4 =

1

6

β5 =
1

5
β6 =

4

5

β7 =
1

20
β8 = 10

γ1 =
1

10
γ2 =

1

40

γ3 =
1

64
γ4 = 15

γ5 =
3

5
γ6 =

2

5

γ7 =
1

16
γ8 = 20

δ1 = 1.2 δ2 = 0.8

δ3 = 0.1.

These β and γ weights were decided by ranking qualita-

tively how well each of the 16 contributing values (eqs.

12–19 and their respective statistical qualities) discrimi-

nated a likely-P (PP) classified calibrator from a likely-S

(SS) classified calibrator, with δ1 and δ2 chosen to make

the contributions of the CSS and RSS of similar mag-

nitude. δ3 is special and simply scales the score; it was

adjusted so that the scores usefully filled the space from

zero to one. The results of this run can be seen in figure

1.

What then is a likely-P or likely-S calibrator? To as-

sess the system, we are ultimately looking to see how

well it distinguishes a good calibrator from a poor cal-

ibrator. With over 3000 sources in the S-band, a band

with no pre-assessed calibrators to examine, it would be

impractical to assess each source individually. Instead, a
likely classification was assigned using the existing VLA

calibrator database (Van Moorsel & Sjouwerman 2019)

for L-band and C-band sources, in the VLA’s A con-

figuration, where all of our measurements were taken.

The assumption we are making is that if a calibrator is

of equal quality in the L- and C-bands, it will proba-

bly be of the same quality in S-band, an intermediate

frequency.

An effective system should show separation between

the calibrator classes, with P calibrators peaking closest

to one, S calibrators following, then W calibrators, fol-

lowed finally by C and X. The order of P, S, and W is

easy to establish, but C and X will have unknown place-

ment and spread; without more information, we are un-

able to tell the reason for that classification, a notable

drawback of the closure phase error method. In this

case, we are ignoring likely-W calibrators due to a lack

of sources—of over 3000 sources, 6 are likely-W (WW)

calibrators in the VLA A configuration in S band, far

too few to draw conclusions from. In figure 2, we can

see the results of this run of the system with the weights

above. We do indeed find that the likely-P sources are

more highly ranked on average than any other. How-

ever, there is significant overlap and as demonstrated in

figures 7 and 8 significant work that must be done to

refine the weights used in the system.
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Figure 1. In subfigure (a), we can see the distribution of all S-band sources used for this study. For ranked calibrators, most
sources are of average quality, but a few are sorted out to being of exceptionally good or of poor quality. In subfigures (b), (c),
and (d) we can see the breakdown of scores for sources that make up our data set. In subfigures (b) and (c), we have sources
that are observed by ALMA or ATCA and are known calibrators at higher frequencies than S band. In subfigure (d), we have
sources that are known calibrators in L-band and C-band. These are color-coded by the classification in each band, of which 18
of 36 have entries. As can be seen here, sources that are of higher quality in either of these bands are more likely to be scored
highly in our calculation.
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Figure 2. In subfigure (a), we can see the distribution of likely-P calibrators, whose score probability peaks around 0.75. In
subfigure (b), we can see the distribution of likely-S calibrators, whose score peaks near 0.7. Finally, in subfigure (c), we can
see the score of likely-X calibrators peaking around 0.5. As we desired, likely-P and likely-S calibrators peak at different places.
Without more information about the reasoning for X-classification, we must simply be satisfied that they are on average worse
then likely-P calibrators.
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Figure 3. These histograms show the distributions of the 4 ’subtracted’ scoring components (equations 12–15) we are looking
at to construct the score (equation 22) for a calibrator. A good point source should be closer to 0 for all of these properties.
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Figure 4. These histograms show the distributions of the 4 ’subtracted’ quality scoring components used to assess the reliability
of the data (equation 21) we are looking at to construct the score (equation 22) for a calibrator. A good point source should be
closer to 0 for all of these properties.
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Figure 5. These histograms show the distributions of the 4 ’divided’ scoring components (equations 16–19) we are looking at
to construct the score (equation 22) for a calibrator. A good point source should be closer to 0 for all of these properties.
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Figure 6. These histograms show the distributions of the 4 ’divided’ quality scoring components used to assess the reliability
of the data (equation 21) we are looking at to construct the score (equation 22) for a calibrator. A good point source should be
closer to 0 for all of these properties.

Figure 7. As of the iteration in use on 14 August 2020, source J0359+5057 is rank 1 of all scored sources. As can be seen from
the Amplitude vs. UV diagram (left), it has a maximum flux on the order of 1 Jy/beam, sufficient for calibration, and has a
constant amplitude with baseline length λ. In the sky (right), the source is compact, but is not what we would describe as a
point source due to the clear surrounding structure. It serves as an example that the absolute ranking is not finalized; in this
case, the flux of this source is inflating its score past conventionally better calibrators.
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Figure 8. As of the iteration in use on 14 August 2020, source J1242+3720 is rank 63 (98th percentile) of all scored sources.
As can be seen from the Amplitude vs. UV diagram (left), it has a maximum flux on the order of a 0.95 Jy, sufficient for
calibration but weaker than the source in Fig. 7, and has a constant amplitude with baseline length λ. It can also be seen that
the spectral index is small. In the sky (right), the source is very compact, and is what we would describe as a point source. It
is what we would consider a high quality calibrator.
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APPENDIX

A. PYTHON CODE

The program to calculate the score was written in Python3 (Van Rossum & Drake 2009). The package NumPy

(Oliphant 2006) was used extensively for calculating values, and MatPlotLib (Hunter 2007) was used for generating

the figures found within this article. Running the program was done inside the Jupyter (Kluyver et al. 2016) notebook

environment. The following section of code makes up the preamble of the program, importing all packages needed for

use.

#!/usr/bin/env python

# coding: utf-8

import numpy as np

import os

import matplotlib

from datetime import datetime

import matplotlib.pyplot as plot

The following section of code takes a data file generated in AIPS and reads it into the program as an array. This is

requires sorting around the descriptive text in the process and making exceptions for accidentally concatenated strings

in AIPS. To see how this data as structured, see appendix B.

def data_lines_only (opened_text, index_array):

# This function will take the raw AIPS data and return only the rows with data as strings,

# discarding any with extraneous information (for our purposes)

new_array = []

for i in range (0,len(index_array)):

data_rows = opened_text[index_array[i]:index_array[i]+5]

new_array.append(data_rows)

return new_array

# Necessary information in this file appears after a string "Task EVAUV has finished",

# occupying five lines

Raw_AIPS_File = open(’evauv/LOOPEVAU.PRT.org’,’r’)

# Open a raw tect file of AIPS outputs from running evauv

Raw_AIPS_File_bylines=Raw_AIPS_File.readlines()

# Saves a line-by-line version of this output into memory

finished_text = "Task EVAUV has finished"

# Text that tells us when data is about to be output

data_indices = np.asarray([i for i, s in enumerate(Raw_AIPS_File_bylines) if finished_text in s])

# Save the index of all lines where above text occurs

data_indices = data_indices+1

# Increment all elements by one, to the lines where data actually starts

AIPS_FILE_DATA = data_lines_only(Raw_AIPS_File_bylines,data_indices)

# cut out all the extra stuff and leave only the data using the function defined above

Raw_AIPS_File.close()

# Close the raw data file because we extracted everything of value

# The above is a list of lists, the main list holding all data and a sub-list

# holding an individual source

# Next, we need to read each source and get the data out of it as strings or floats,

# as appropriate

header = [’Source Name’, ’Visibil’, ’Flux (Jy/b)’, ’SUB Re’, ’Sub Re RMS’, ’Sub Im’,

’Sub Im RMS’, ’Sub Amp’, ’Sub Amp RMS’, ’Sub Frac’, ’Sub Frac Avg’, ’DIV Re’, ’DIV Re RMS’,

’DIV Im’, ’DIV Im RMS’, ’DIV Amp’, ’DIV Amp RMS’, ’DIV Frac’, ’DIV Frac Avg’ ]

def extract_data_from_AIPS (DATA):

# Using the data only array of strings generated in the previous function, extract the data for

# each calibrator as floats or strings

read_data = []

read_data.append(header)

for i in range(0,len(DATA)): # Loop over each string in the array
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source_data = []

source_to_read = DATA[i]

string_1 = source_to_read[0]

sstring = string_1.split(’AIPS’,1)[1] # Cut off the output details

sstring = sstring.split("’\n",1)[0] # Remove New Line ’\n’

data = sstring.split(’ ’,13) # Split string into substrings that have data we want

source_name = data[6].split("’",1)[1] # Cut off the single quite at the start of the

# name, and save to source_name variable

source_vis = int(data[8]) # Turn the source visible points into an integer

# and save as source_vis

source_fluxbeam = float(data[13]) # Take the Jy/beam and turn into a float

source_data.append(source_name) # Append name to array holding data from this source

source_data.append(source_vis) # Append visibil to array holding data

# from this source

source_data.append(source_fluxbeam) # Append flux (in Jy/beam) to array holding data

# from this source

for j in range (1,len(source_to_read)):

# This loop itterates over individual data now that the original string is split into

# an array of strings.

string_2 = source_to_read[j]

sstring = string_2.split(’AIPS’,1)[1]

sstring = sstring.split(’\n’,1)[0] # Remove New Line ’\n’

data = sstring.split()

if len(data) <= 3:

# Check if succcessfully split into 4 parts, if not look at each of the (likely) 3

# strings

if len(data[0])>10:

datum0 = float(data[0][0:11])

datum1 = float(data[0][11:])

datum2 = float(data[1])

datum3 = float(data[2])

if len(data[1])>10:

datum0 = float(data[0])

datum1 = float(data[1][0:11])

datum2 = float(data[1][11:])

datum3 = float(data[2])

if len(data[2])>8:

# Most common error. The final datum in some sets begins adjacent to the

# penultimate. The penultimate is 9 characters long (precision limit), so the

# third string is split into one of length 9 and another of the remainder.

datum0 = float(data[0])

datum1 = float(data[1])

datum2 = float(data[2][0:9])

datum3 = float(data[2][9:])

# Should change to check if a substring has more than one dot

# Note: Need to change to exception if conversion to float fails.

else:

datum0 = float(data[0]) # Individual values from line

datum1 = float(data[1]) # Individual values from line

datum2 = float(data[2]) # Individual values from line

datum3 = float(data[3]) # Individual values from line

source_data.append(datum0)

source_data.append(datum1)

source_data.append(datum2)

source_data.append(datum3)

read_data.append(source_data)

return read_data

Extracted_Data = extract_data_from_AIPS(AIPS_FILE_DATA)

The next section of code implements the scoring system.

# For easier changing later on, if necessary, let’s assign a variable for each column index

SrcNm_Indx = 0 # Tells us the name of the source. Good for identifying only (clearly)

vsbl_Indx = 1 # Tells us how many individual detections make up the source. More is better.

flx_Jyb_Indx = 2 # Tells us how bright the source is. Higher is better.

SRE_Indx = 3

SRE_RMS_Indx = 4

SIM_Indx = 5
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SIM_RMS_Indx = 6

SAMP_Indx = 7

SAMP_RMS_Indx = 8

SFRAC_Indx = 9

SFRAC_AVG_Indx = 10 # Tells us if points are distributed in lines in FLX-UV space at given lambda.

# Lower is better.

# NOTE: IN THE DATA SET, WE HAVE DIV-1, NOT DIV!

DRE_Indx = 11

DRE_RMS_Indx = 12

DIM_Indx = 13

DIM_RMS_Indx = 14

DAMP_Indx = 15

DAMP_RMS_Indx = 16

DFRAC_Indx = 17

DFRAC_AVG_Indx = 18

Score_Indx = 19

# Using the above columns, we can create a scoring system by weighting values. This score should

# quantify how good of a calibrator the source is.

# The scoring system is a combination of the various values above.

def calculate_score_vector_space (data, vsbl_wt=1, flx_Jyb_wt=1, SRE_wt=1, SRE_RMS_wt=1, SIM_wt=1, SIM_RMS_wt=1, SAMP_wt=1,

SAMP_RMS_wt=1, SFRAC_wt=1, SFRAC_AVG_wt=1, DRE_wt=1, DRE_RMS_wt=1, DIM_wt=1, DIM_RMS_wt=1,

DAMP_wt=1, DAMP_RMS_wt=1, DFRAC_wt=1, DFRAC_AVG_wt=1, vsbl_cut=0, flx_Jyb_cut=0,

SRE_cut=np.inf, SRE_RMS_cut=np.inf, SIM_cut=np.inf, SIM_RMS_cut=np.inf, SAMP_cut=np.inf,

SAMP_RMS_cut=np.inf, SFRAC_cut=np.inf, SFRAC_AVG_cut=np.inf, DRE_cut=np.inf,

DRE_RMS_cut=np.inf, DIM_cut=np.inf, DIM_RMS_cut=np.inf, DAMP_cut=np.inf, DAMP_RMS_cut=np.inf,

DFRAC_cut=np.inf, DFRAC_AVG_cut=np.inf):

# This scoring system uses what we know about an ideal point source to create a vector space around which we can make score based

# on the distance in this space from the ideal. This funtion also takes optional arguments to weight values and establish cut-offs,

# above which we shouldn’t consider the source anymore; visibilities and flux are exceptions and are minima instead.

scores_column = []

cut_sources = 0

for lpng_indx in range(1,len(data)):

if data[lpng_indx][vsbl_Indx] < vsbl_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to number of visibilities being below minimum.’)

elif data[lpng_indx][flx_Jyb_Indx] < flx_Jyb_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to flux/beam being below minimum (assuming Jy/beam).’)

elif np.abs(data[lpng_indx][SRE_Indx])/data[lpng_indx][flx_Jyb_Indx] > SRE_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to magnitude of observed minus model Re(V)/<S> being above maximum.’)

elif np.abs(data[lpng_indx][SRE_RMS_Indx])/data[lpng_indx][flx_Jyb_Indx] > SRE_RMS_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to observed minus model Re(V)/<S> RMS being above maximum.’)

elif np.abs(data[lpng_indx][SIM_Indx])/data[lpng_indx][flx_Jyb_Indx] > SIM_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to magnitude of observed minus model Im(V)/<S> being above maximum.’)

elif np.abs(data[lpng_indx][SIM_RMS_Indx])/data[lpng_indx][flx_Jyb_Indx] > SIM_RMS_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to observed minus model Im(V)/<S> RMS being above maximum.’)

elif np.abs(data[lpng_indx][SAMP_Indx])/data[lpng_indx][flx_Jyb_Indx] > SAMP_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to magnitude of observed minus model |V|/<S> being above maximum.’)

elif np.abs(data[lpng_indx][SAMP_RMS_Indx])/data[lpng_indx][flx_Jyb_Indx] > SAMP_RMS_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to observed minus model |V|/<S> RMS being above maximum.’)

elif np.abs(data[lpng_indx][DRE_Indx]) > DRE_cut:
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raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to magnitude of observed divided by model Re(V) being above maximum.’)

elif data[lpng_indx][DRE_RMS_Indx] > DRE_RMS_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to observed divided by model Re(V) RMS being above maximum.’)

elif np.abs(data[lpng_indx][DIM_Indx]) > DIM_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to magnitude of observed divided by model Im(V) being above maximum.’)

elif data[lpng_indx][DIM_RMS_Indx] > DIM_RMS_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to observed divided by model Im(V) RMS being above maximum.’)

elif np.abs(data[lpng_indx][DAMP_Indx]) > DAMP_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to magnitude of observed divided by model |V| being above maximum.’)

elif data[lpng_indx][DAMP_RMS_Indx] > DAMP_RMS_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to observed divided by model |V| RMS being above maximum.’)

elif np.abs(data[lpng_indx][SFRAC_Indx]) > SFRAC_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to subtracted fraction of bad gains above maximum.’)

elif np.abs(data[lpng_indx][SFRAC_AVG_Indx]) > SFRAC_AVG_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to subtracted average of bad gains above maximum.’)

elif np.abs(data[lpng_indx][DFRAC_Indx]) > DFRAC_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to divided fraction of bad gains above maximum.’)

elif np.abs(data[lpng_indx][DFRAC_AVG_Indx]) > DFRAC_AVG_cut:

raw_score = 0

cut_sources += 1

print (’Source’, data[lpng_indx][0], ’assigned score=0 due to divided average of bad gains above maximum.’)

else:

# RMS values should ideally be zero (perfectly reliable data), so we can create a reliability measure with that data.

real_reliability = np.sqrt((((SRE_RMS_wt)*data[lpng_indx][SRE_RMS_Indx]/data[lpng_indx][flx_Jyb_Indx])**2 +

((DRE_RMS_wt)*data[lpng_indx][DRE_RMS_Indx])**2))

imag_reliability = np.sqrt((((SIM_RMS_wt)*data[lpng_indx][SIM_RMS_Indx]/data[lpng_indx][flx_Jyb_Indx])**2 +

((DIM_RMS_wt)*data[lpng_indx][DIM_RMS_Indx])**2))

amp_reliability = np.sqrt(((SAMP_RMS_wt*data[lpng_indx][SAMP_RMS_Indx]/data[lpng_indx][flx_Jyb_Indx])**2 +

(DAMP_RMS_wt*data[lpng_indx][DAMP_RMS_Indx])**2))

aggregate_reliability = np.sqrt(real_reliability**2 + imag_reliability**2 + amp_reliability**2)

flatness_score = np.sqrt(SFRAC_AVG_wt*(data[lpng_indx][SFRAC_AVG_Indx])**2 + DFRAC_AVG_wt*(data[lpng_indx][DFRAC_AVG_Indx])**2)

# Using the RMS values, calculate reliability as the quadrature sum of individual RMS values

# We can also multiply by the raw score to weight based on reliability.

SFRAC_score = np.abs(data[lpng_indx][SFRAC_Indx])

DFRAC_score = np.abs(data[lpng_indx][DFRAC_Indx])

SIM_score = np.abs(data[lpng_indx][SIM_Indx])/data[lpng_indx][flx_Jyb_Indx]

DIM_score = np.abs(data[lpng_indx][DIM_Indx])

SRE_score = np.abs(data[lpng_indx][SRE_Indx])/data[lpng_indx][flx_Jyb_Indx]

DRE_score = np.abs(data[lpng_indx][DRE_Indx])

SAMP_score = np.abs(data[lpng_indx][SAMP_Indx])/data[lpng_indx][flx_Jyb_Indx]

DAMP_score = np.abs(data[lpng_indx][DAMP_Indx])

imag_dist = np.sqrt(SIM_wt*(SIM_score)**2+DIM_wt*(DIM_score)**2) # Ideally SIM = DIM = 0. This calcultates the distance in a SIM and DIM Space from 0.

real_dist = np.sqrt(SRE_wt*(SRE_score)**2+DRE_wt*(DRE_score)**2) # The same holds for Real space

amp_dist = np.sqrt(SAMP_wt*(SAMP_score)**2+DAMP_wt*(DAMP_score)**2) # ibid

frac_dist = np.sqrt(SFRAC_wt*(SFRAC_score)**2+DFRAC_wt*(DFRAC_score)**2) # ibid

flux_score = np.abs(data[lpng_indx][flx_Jyb_Indx]) # Weight the score as avg. flux/flux. This way, stronger sources will have a better score in the end. More flux is generally better because that makes detection easier.

CSS = (1/(SRE_wt + DRE_wt + SIM_wt + DIM_wt + SAMP_wt + DAMP_wt + SFRAC_wt + DFRAC_wt))*np.sqrt((real_dist**2 + imag_dist**2 + amp_dist**2 + frac_dist**2))



19

RSS = (1/(SRE_RMS_wt + DRE_RMS_wt + SIM_RMS_wt + DIM_RMS_wt + SAMP_RMS_wt + DAMP_RMS_wt + SFRAC_AVG_wt + DFRAC_AVG_wt))*np.sqrt((aggregate_reliability**2 + flatness_score**2))

raw_score = 1/(1+score_wt*(1/((CSS_wt+RSS_wt+flx_Jyb_wt)))*((CSS_wt)*CSS + (RSS_wt)*RSS + flx_Jyb_wt/flux_score))

if raw_score == np.inf: # No real data should be perfect

raw_score = 0

cut_sources += 1

print(’Source’, data[lpng_indx][0], ’assigned score=0 due to calculated score being infinity.’)

scores_column.append(raw_score)

print (’Total of’, cut_sources, ’sources cut due to declared cut-offs.’, len(data)-cut_sources,’ranked.’)

return scores_column

score_list = calculate_score_vector_space(Extracted_Data, vsbl_wt, flx_Jyb_wt, SRE_wt, SIM_wt,

SAMP_wt, SFRAC_wt, DRE_wt, DIM_wt, DAMP_wt, DFRAC_wt)

score_list.insert(0,’Scores’) # Appends a header to this array.

The following section of code combines the new score array to the data array generated earlier. The new combined

array is then sorted based on score, and an HTML file is created that shows the calibrators in ranked order with

associated images.

transposed_Data = [list(x) for x in zip(*Extracted_Data)]

transposed_Data.append(score_list)

scored_Data = [list(x) for x in zip(*transposed_Data)]

data_header = scored_Data[0]

del scored_Data[0] # Remove the header in preparation for sorting

all_cal_images = os.listdir(’all_cal’) # Obtain the location of images to be included in webpage.

def examine_final(elem):

# Sorting Key. Will sort a list based on the final element in the list. For a list of lists,

# like what we have, this sorts based on the final element of each sub-list (the score).

return elem[-1]

def write_html_table_row (data_row_1, data_row_2, iterating_index):

source_1_name = data_row_1[0]

source_2_name = data_row_2[0]

source_1_images = [iterator for iterator in all_cal_images if source_1_name in iterator]

source_2_images = [iterator for iterator in all_cal_images if source_2_name in iterator]

if len([iterator for iterator in source_1_images if ’UT’ in iterator])<1:

image_1_map = ’all_cal/’+’image_not_found.gif’

else:

image_1_map = ’all_cal/’+[iterator for iterator in source_1_images if ’UT’ in iterator][0]

if len([iterator for iterator in source_1_images if ’uvd’ in iterator])<1:

image_1_uv = ’all_cal/’+’image_not_found.gif’

else:

image_1_uv = ’all_cal/’+[iterator for iterator in source_1_images if ’uvd’ in iterator][0]

if len([iterator for iterator in source_2_images if ’UT’ in iterator])<1:

image_2_map = ’all_cal/’+’image_not_found.gif’

else:

image_2_map = ’all_cal/’+[iterator for iterator in source_2_images if ’UT’ in iterator][0]

if len([iterator for iterator in source_2_images if ’uvd’ in iterator])<1:

image_2_uv = ’all_cal/’+’image_not_found.gif’

else:

image_2_uv = ’all_cal/’+[iterator for iterator in source_2_images if ’uvd’ in iterator][0]

row_str_1 = ’<tr><td align=center>Rank ’ + str(iterating_index+1) + ’<br />’ + data_row_1[0]

+ ’<br />value: ’ + str(data_row_1[Score_Indx]) + ’</td><td align=center><a href=’ + image_1_uv

+ ’><img width=200 src=’ + image_1_uv + ’></a></td><td align=center><a href=’ + image_1_map

+ ’><img width=200 src=’ + image_1_map + ’></a></td>’

row_str_2 = ’<td align=center>Rank ’ + str(iterating_index+2) + ’<br />’+data_row_2[0]

+ ’<br />value: ’ + str(data_row_2[Score_Indx]) + ’</td><td align=center><a href=’ + image_2_uv

+ ’><img width=200 src=’ + image_2_uv + ’></a></td><td align=center><a href=’ + image_2_map
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+ ’><img width=200 src=’ + image_2_map + ’></a></td></tr>\n’

return row_str_1+row_str_2

scored_Data.sort(key = examine_final, reverse=True)

def write_sorted_html (data_with_score,score_method):

now = datetime.utcnow()

current_time = now.strftime("%d %h %Y, [%H:%M:%S UTC]")

current_time_file_name = now.strftime("%d%h%Y_%H_%M_%S")

Header_text= """<html>

<head><title>/users/hprager/public_html/score_sorted</title></head>

<body alink="#ffff00" bgcolor="#eeeeee" link="#ffff00" text="#000000" vlink="#ffff00">

<p><center><h1>Column 19: sorted on score</h1></center></p>

<p><hr></p><p><br>

"""

text_date = ’<font color="#000000" size="-1">Latest update: ’ + current_time + ’</font>\n’

text_score_method = ’, <font color="#000000" size="-1">Scoring Method: ’+ score_method

+ ’</font>\n’

text_table_def = ’</p><p><div align="center"><table border="1" cellpadding="4"

cellspacing="1%" width="95%"><tbody>’

file_text = []

file_text.append(Header_text)

file_text.append(text_date)

file_text.append(text_score_method)

file_text.append(text_table_def)

indx = 0

print(’Sources: ’,len(data_with_score)) # Tell user how many sources are going to be displayed

# on the generated webpage

while indx< len(data_with_score)-1:

row = write_html_table_row (data_with_score[indx], data_with_score[indx+1], indx)

file_text.append(row)

if len(data_with_score)-indx == -1:

# Check if we have an odd number of values at the end, so we can do something

# special with the last row

row = write_html_table_row (data_with_score[indx+2], data_with_score[indx+2], indx+2)

# for now, duplicate final entry; clean-up later

file_text.append(row)

break

else:

indx = indx + 2 # Iterate by two because we have two sources per row

closing_text =’’’</tbody></table></div></p>

<p><font color="#000000"size=-1>Auto-created by Henry Prager</font></p>

<p><hr></p></body>

</html>

’’’

file_text.append(closing_text)

joined_text = ’’

joined_text=joined_text.join(file_text)

html_file = open("score_sorted"+current_time_file_name+’.html’,"w")

html_file.write(joined_text)

html_file.close()

print(’HTML file "score_sorted’+current_time_file_name+’.html" written to current directory.’)

return 1
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B. AIPS DATA

Below is a sample of the data being analyzed, as being output by AIPS. As can be seen, a new source is introduced

with the statement ‘SOURCE’ ’J0302+5331’. The evaluation of this source is then declared finished with the phrase

‘Task EVAUV has finished’, which is the key phrase searched for by the extracting function (see appendix A). Data

from the computed model then appears on the next 5 lines, with the first line being formatted uniquely. The extracting

function takes the data from these lines, and sorts them into the appropriate column, simply based on the order they

appear.

Pops Prior Date Time Task Messages for user15933

1 2 14-FEB-2017 11:16:53 AIPS Disk 12 No files needed renumbering

1 2 14-FEB-2017 11:16:53 AIPS Got(1) disk=12 user=**** type=UV CAL_01.SPLAT0.1

1 5 14-FEB-2017 11:16:53 AIPS ’SKIPPING SOURCE’ ’3C48’

1 2 14-FEB-2017 11:16:53 AIPS Got(1) disk=12 user=**** type=UV CAL_01.SPLAT0.1

1 5 14-FEB-2017 11:16:53 AIPS ’SOURCE’ ’J0302+5331’

1 2 14-FEB-2017 11:16:53 AIPS Waiting for returned adverbs

1 5 14-FEB-2017 11:16:53 EVAUV Task EVAUV (release of 31DEC17) begins

1 3 14-FEB-2017 11:16:53 EVAUV UVGET: doing no flagging this time

1 5 14-FEB-2017 11:16:53 EVAUV Copied 8973 visibilities to the work file

1 3 14-FEB-2017 11:16:53 EVAUV Copied XX file from vol/cno/vers 11 2 1 to 12 24 1

1 4 14-FEB-2017 11:16:53 EVAUV Updating tables for IF/FREQID/channel selection

1 3 14-FEB-2017 11:16:53 EVAUV Copied AN file from vol/cno/vers 11 2 1 to 12 24 1

1 3 14-FEB-2017 11:16:53 EVAUV Copied CD file from vol/cno/vers 11 2 1 to 12 24 1

1 4 14-FEB-2017 11:16:53 EVAUV Using SMODEL = 0.30528 0.00000 0.00000

1 7 14-FEB-2017 11:16:53 EVAUV IGNORING MODEL IMAGE J0302+5331

1 2 14-FEB-2017 11:16:53 EVAUV QINIT: did a GET of 5120 Kwords, OFF 17559181948887

1 2 14-FEB-2017 11:16:53 EVAUV EVADFT: Begin DFT component subtraction & division

1 2 14-FEB-2017 11:16:53 EVAUV EVADFT: Model components of type Point

1 2 14-FEB-2017 11:16:53 EVAUV Model computation is 30 percent complete

1 2 14-FEB-2017 11:16:53 EVAUV Model computation is 60 percent complete

1 2 14-FEB-2017 11:16:53 EVAUV Model computation is 100 percent complete

1 5 14-FEB-2017 11:16:54 EVAUV method real part imaginary part amplitude

1 5 14-FEB-2017 11:16:54 EVAUV subtract -0.0003 +- 0.022 0.0004 +- 0.022 0.0274 +- 0.014

1 5 14-FEB-2017 11:16:54 EVAUV divide-1 -0.0010 +- 0.072 0.0012 +- 0.071 0.0899 +- 0.047

1 5 14-FEB-2017 11:16:54 EVAUV method # bad samples total samples avg bad amp

1 5 14-FEB-2017 11:16:54 EVAUV subtract 47 210446 0.1258

1 5 14-FEB-2017 11:16:54 EVAUV divide-1 47 210446 0.4121

1 2 14-FEB-2017 11:16:54 EVAUV returns adverbs to AIPS

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 94

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 1 created

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 94

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 2 created

1 2 14-FEB-2017 11:16:54 AIPS Resumes

1 3 14-FEB-2017 11:16:54 EVAUV Gridded image max= 2.7300E+02 counts; peak contour 2.0 in log10

1 4 14-FEB-2017 11:16:54 EVAUV Plotted 210421. omitted 25. vis of RE/IM plot 1

1 4 14-FEB-2017 11:16:54 EVAUV Used image of 121 pixels on a side, smoothed by 1 pixels

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 74

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 3 created

1 3 14-FEB-2017 11:16:54 EVAUV Gridded image max= 7.0900E+02 counts; peak contour 2.5 in log10

1 4 14-FEB-2017 11:16:54 EVAUV Plotted 210443. omitted 3. vis of RE/IM plot 2

1 4 14-FEB-2017 11:16:54 EVAUV Used image of 121 pixels on a side, smoothed by 1 pixels

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 38

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 4 created

1 3 14-FEB-2017 11:16:54 EVAUV Appears to have ended successfully

1 5 14-FEB-2017 11:16:54 EVAUV euro 31DEC17 TST: Cpu= 0.6 Real= 1 IO= 155

1 3 14-FEB-2017 11:16:54 AIPS Task EVAUV has finished

1 5 14-FEB-2017 11:16:54 AIPS ’J0302+5331 HAS 8973 VIS, FLUX (JY/BM) = 0.3053’

1 5 14-FEB-2017 11:16:54 AIPS -0.0002973 0.0219181 0.0003746 0.0217571

1 5 14-FEB-2017 11:16:54 AIPS 0.0274305 0.0141977 0.0002233 0.1257948

1 5 14-FEB-2017 11:16:54 AIPS -0.0009738 0.0717969 0.001227 0.0712696

1 5 14-FEB-2017 11:16:54 AIPS 0.0898538 0.0465071 0.0002233 0.4120648

1 2 14-FEB-2017 11:16:54 AIPS Got(1) disk=12 user=**** type=UV CAL_01.SPLAT0.1

1 5 14-FEB-2017 11:16:54 AIPS ’SOURCE’ ’J0303+4716’

1 2 14-FEB-2017 11:16:54 AIPS Waiting for returned adverbs

1 5 14-FEB-2017 11:16:54 EVAUV Task EVAUV (release of 31DEC17) begins

1 3 14-FEB-2017 11:16:54 EVAUV UVGET: doing no flagging this time

1 5 14-FEB-2017 11:16:54 EVAUV Copied 7020 visibilities to the work file

1 3 14-FEB-2017 11:16:54 EVAUV Copied XX file from vol/cno/vers 11 3 1 to 12 24 1
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1 4 14-FEB-2017 11:16:54 EVAUV Updating tables for IF/FREQID/channel selection

1 3 14-FEB-2017 11:16:54 EVAUV Copied AN file from vol/cno/vers 11 3 1 to 12 24 1

1 3 14-FEB-2017 11:16:54 EVAUV Copied CD file from vol/cno/vers 11 3 1 to 12 24 1

1 4 14-FEB-2017 11:16:54 EVAUV Using SMODEL = 2.45805 0.00000 0.00000

1 7 14-FEB-2017 11:16:54 EVAUV IGNORING MODEL IMAGE J0303+4716

1 2 14-FEB-2017 11:16:54 EVAUV QINIT: did a GET of 5120 Kwords, OFF 17532279675351

1 2 14-FEB-2017 11:16:54 EVAUV EVADFT: Begin DFT component subtraction & division

1 2 14-FEB-2017 11:16:54 EVAUV EVADFT: Model components of type Point

1 2 14-FEB-2017 11:16:54 EVAUV Model computation is 40 percent complete

1 2 14-FEB-2017 11:16:54 EVAUV Model computation is 80 percent complete

1 5 14-FEB-2017 11:16:54 EVAUV method real part imaginary part amplitude

1 5 14-FEB-2017 11:16:54 EVAUV subtract -0.0062 +- 0.250 -0.0046 +- 0.053 0.2250 +- 0.121

1 5 14-FEB-2017 11:16:54 EVAUV divide-1 -0.0025 +- 0.102 -0.0019 +- 0.022 0.0915 +- 0.049

1 5 14-FEB-2017 11:16:54 EVAUV method # bad samples total samples avg bad amp

1 5 14-FEB-2017 11:16:54 EVAUV subtract 97 161948 3.3920

1 5 14-FEB-2017 11:16:54 EVAUV divide-1 97 161948 1.3799

1 2 14-FEB-2017 11:16:54 EVAUV returns adverbs to AIPS

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 95

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 1 created

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 94

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 2 created

1 2 14-FEB-2017 11:16:54 AIPS Resumes

1 3 14-FEB-2017 11:16:54 EVAUV Gridded image max= 5.5500E+02 counts; peak contour 2.5 in log10

1 4 14-FEB-2017 11:16:54 EVAUV Plotted 161853. omitted 95. vis of RE/IM plot 1

1 4 14-FEB-2017 11:16:54 EVAUV Used image of 107 pixels on a side, smoothed by 1 pixels

1 2 14-FEB-2017 11:16:54 EVAUV GFINIS: number records used 42

1 5 14-FEB-2017 11:16:54 EVAUV Successful histogram plot file version 3 created

1 3 14-FEB-2017 11:16:55 EVAUV Gridded image max= 1.6590E+03 counts; peak contour 3.0 in log10

1 4 14-FEB-2017 11:16:55 EVAUV Plotted 161864. omitted 84. vis of RE/IM plot 2

1 4 14-FEB-2017 11:16:55 EVAUV Used image of 107 pixels on a side, smoothed by 1 pixels

1 2 14-FEB-2017 11:16:55 EVAUV GFINIS: number records used 26

1 5 14-FEB-2017 11:16:55 EVAUV Successful histogram plot file version 4 created

1 3 14-FEB-2017 11:16:55 EVAUV Appears to have ended successfully

1 5 14-FEB-2017 11:16:55 EVAUV euro 31DEC17 TST: Cpu= 0.6 Real= 1 IO= 124

1 3 14-FEB-2017 11:16:55 AIPS Task EVAUV has finished

1 5 14-FEB-2017 11:16:55 AIPS ’J0303+4716 HAS 7020 VIS, FLUX (JY/BM) = 2.458’

1 5 14-FEB-2017 11:16:55 AIPS -0.0062492 0.2495777 -0.0046047 0.0533107

1 5 14-FEB-2017 11:16:55 AIPS 0.2249807 0.1207269 0.000599 3.3919735

1 5 14-FEB-2017 11:16:55 AIPS -0.0025424 0.1015349 -0.0018733 0.0216882

1 5 14-FEB-2017 11:16:55 AIPS 0.0915282 0.049115 0.000599 1.3799465

1 2 14-FEB-2017 11:16:55 AIPS Got(1) disk=12 user=**** type=UV CAL_01.SPLAT0.1
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