
OVID: A Python CARTA back-end

Phani Velicheti1 and Jan-Willem Steeb2

1University of Arizona. Tucson, Arizona
2National Radio Astronomy Observatory. Charlottesville, Virginia

Email: phaniv@email.arizona.edu, jsteeb@nrao.edu

CARTA is the Cube Analysis and Rendering Tool for Astronomy, a visualization
tool used for images and visibility data sets in the form of FITS, HDF5, MIRIAD
and CASA files. In order to view very large (TB size) images created by large and
newer telescopes in a performant manner, CARTA uses web browsers and various
serialization and parallelization techniques in its client-server architecture. This
project aims to replace CARTA’s C++ back-end with a Python back-end with
comparable performance, increases code readability, makes future development
easier for scientific programming audiences and supports next generation CASA
prototypes with newer file formats while supporting existing file formats. The

source code can be found at OVID.

1. INTRODUCTION

CARTA is the Cube Analysis and Rendering Tool for
Astronomy, a new image visualization and analysis
tool designed for the ALMA, VLA, SKA pathfinders,
and the ngVLA Comrie et al. 2021. CARTA’s client-
server architecture is defined by the interface control
document (ICD) and has three components:

• carta-back-end,
• carta-front-end,
• carta-controller.

The carta-back-end does all the data processing and
computation for images. It is intended to be run on
large clusters in order to ensure performance and reduce
load on the user via GPUs and enterprise grade storage
solutions.

The carta-controller provides a dashboard to manage
front-end and back-end sessions. The carta-front-end
is responsible for receiving the data produced by the
back-end and does minimal processing to render the
data in an efficient manner to be viewed in modern web
browsers as a GUI application.

Protocol buffers are language-neutral, enabling us to
develop a python back-end without affecting the front-
end. Carta-protobuf contains protocol buffer message
definitions to be used in serializing structured data for
the front-end and back-end interfaces.

The current carta back-end is entirely written in
C++ and supports legacy formats such as FITS, HDF5,
CASA and MIRIAD.

The back-end aims to achieve the following:

1. Replace the current C++ CARTA back-end with
a pure python back-end using the next generation
CASA prototype.

2. Support newer file formats (img.zarr)
3. Be comparably performant to the CASA C++

back-end.

4. Legacy format support for FITS, HDF5, CASA
and MIRIAD.

5. Increase readability of code and make future
development easier for scientific programming
audiences.

While supporting existing file formats,the back-end
should achieve comparable performance to the C++
back-end, by utilizing the next generation CASA
prototype infrastructure which consists of a framework
with support for a variety of compression, storage
serialization, just-in-time compilation, file format, and
cluster based cloud computing features.

2. CASA NEXT GENERATION INFRAS-
TRUCTURE PROTOTYPE

Figure 1 is the Prototype Design Software framework
for Next Generation CASA.This prototype uses the
following libraries to process, store and analyse data:

• Numba is used for just-in-time compilation of
python code . It translates python code into
machine code through an LLVM compiler. This
enables us to gain a significant performance boost
while running computationally heavy parts of code
such as for loops that cannot be vectorized.

• Xarray forms the basis for new file formats such
as img.zarr due to its support for N-dimensional
labelled datasets. The data is chunked on disk
through its compatibility with Zarr.

• Zarr enables the storage of N dimensional NumPy
ndarrays which can be chunked along any dimen-
sion and compressed through a Numcodecs sup-
ported codec. Dask’s lazy execution functionality
enables us to load metadata of the Xarray dataset
for which it is used. These ndarrays can be stored
locally or on cloud computing platforms in order
to support larger than memory datasets.

1

https://github.com/casangi/ovid


2

FIGURE 1. Prototype Design Software framework for Next Generation CASA Source:CARTA-Team 2021

FIGURE 2. CARTA front-end GUI default view Comrie et al. 2021

• Dask enables parallel computing compatible with
Zarr. Its specification to encode a Directed Acyclic
Graph (DAG) consists of python data structures
that are abstracted in the form of Dask collections.
These DAG task graphs are then executed by a
dynamic task scheduler in parallel.

3. CARTA FRONT-END GUI

As seen in figure 2, CARTA front-end default view has
three main components:

• Spatial profile panels
• Region configuration and statistics panel
• Region view

The spectral profile panels give the X,Y and Z profiles
of the location of the cursor on the image.

The statistics panel shows a per-channel histogram
with bin count determined by the geometric mean of
the image and user-defined boundary values.

The region view contains the render associated with

the raster tile data streamed by the back-end and is
governed by the ”tiled web map” (Maso, Pomakis,
and Julia 2010) convention associated with geographic
information system (GIS) software.

The front-end can request specific tiles of an image
to be delivered.

4. THE PYTHON BACK-END

The UML diagram figure 3 shows the structure of the
python backend.It is made up of the following:

• Google protocol buffers are a language-neutral,
platform-neutral, extensible mechanism for serial-
izing structured data which allow us to communi-
cate with the existing protobuf interface and keep
the front-end. In order to communicate with the
front-end, Tornado and Google protocol buffers are
used.

• The server (handled by Server) is written in
Tornado and provides a single threaded event-loop
for asynchronous and non-blocking application

2



OVID: A Python CARTA Back-end 3

FIGURE 3. UML diagram for python back-end

code. It calls Session for each EventType message
(ICD message) to handle server side configuration.
The server class can be easily refactored to
accommodate other python server libraries.

• FileInfo handles file headers, metadata and basic
loading. It is written in Astropy and standard
python libraries.

• Frames are associated with the opened image and
index the image to provide raster tile data and
statistics to the front-end.Some of the features
handled by Frame are viewing profiles based on
the position of the cursor,passing on information
about raster tiles to other classes and handling
image view and stokes changes.

5. RASTER TILING

CARTA follows the ”tiled web map” (Maso, Pomakis,
and Julia 2010) convention to render images. The
user defined settings in the render configuration widget
determines how a raster image is rendered.As shown
in figure 4, CARTA splits the image into downsampled
256 x 256 wide squares and renders the image when the
back-end sends specific tile data. Contour rendering
works in a similar manner. The CARTA Interface
Control Document has various ICD messages that seek
to optimise raster tile data delivery. They give us the
following features:

• If tile data for a certain tile is no longer needed as
a consequence of user zoom/pan and has not been
sent by the front-end, it is removed from the list of
required tiles.

• CARTA supports various levels and algorithms
dealing with the compression of raster tile data.

• The raster tiles are reused while zooming and
panning the image.

This approach is efficient as it reuses tile data which
affects performance while viewing large images.

6. DEVELOPMENT PROCESS

Test driven development is done with the CARTA
Interface Control Document.Feature testing is done to
a standalone front-end application via a browser.

7. PROGRESS

The directory and file browsing interface,file metadata
and header loading, region statistics and exception
handling have been done.

The future objectives for this project are:

• Full interoperability with C++ back-end (tested by
CARTA ICD test).

• img.zarr (next generation CASA prototype format)
integration.

3



4

FIGURE 4. Raster Tile view CASA-Team 2021

• Integration with next generation CASA prototype
image analysis.

• Parallelization using Dask.

8. CONCLUSION

We propose that moving to a python back-end for
CARTA can enable better scalability, be comparably
performant, reduce custom code dependence, bring in
community development and support legacy formats
while transitioning towards newer file formats.With
further development, this project can make that
transition possible.

ACKNOWLEDGEMENTS

This research was undertaken as part of the Summer
Student Research Assistantship Program at the
National Radio Astronomy Observatory and supervised
by Jan-Willem Steeb.

REFERENCES

[1] CARTA-Team. CASA Next Generation Infras-
tructure 0.1b documentation. NRAO, 2021. url:

https://cngi-prototype.readthedocs.io/en/

latest/.
[2] CASA-Team. Image cube visualization CARTA 2.0

documentation. NRAO, 2021. url: https : / /

carta.readthedocs.io/en/latest/_static/

carta _ fn _ tiledRendering . png (visited on
08/31/2021).

[3] Angus Comrie et al. CARTA: The Cube Analysis
and Rendering Tool for Astronomy. Version 2.0.0.
June 2021. doi: 10.5281/zenodo.4905459. url:
https://doi.org/10.5281/zenodo.4905459.

[4] Joan Maso, Keith Pomakis, and Nuria Julia. Cate-
gory: OpenGIS Implementation Standard OpenGIS
Web Map Tile Service Implementation Standard.
2010. url: http : / / portal . opengeospatial .

org / files / ?artifact _ id = 35326 (visited on
09/01/2021).

4

https://cngi-prototype.readthedocs.io/en/latest/
https://cngi-prototype.readthedocs.io/en/latest/
https://carta.readthedocs.io/en/latest/_static/carta_fn_tiledRendering.png
https://carta.readthedocs.io/en/latest/_static/carta_fn_tiledRendering.png
https://carta.readthedocs.io/en/latest/_static/carta_fn_tiledRendering.png
http://dx.doi.org/10.5281/zenodo.4905459
https://doi.org/10.5281/zenodo.4905459
http://portal.opengeospatial.org/files/?artifact_id=35326
http://portal.opengeospatial.org/files/?artifact_id=35326

	Introduction
	CASA Next Generation Infrastructure prototype
	CARTA front-end GUI
	The python back-end
	Raster Tiling 
	Development Process
	Progress
	Conclusion

