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ABSTRACT
Release E : Derivation of the quantum noise of a mixer using second order quantization methods
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1. QUANTUM THEORY OF DIRECT DETECTION
In order to establish some necessary relations, let us consider first a quantum physical approach to direct
detection. There the receiver (i.e. a diode) generates a certain amount of photoelectrons per incident detected
photon. The quantum efficiency 

i 
is assumed unity in the following sections. The detection of the incident

radiation is equivalent to the counting operator of the incident photons. The charge operator Q go‘Terning the
photon absorption and ideal photoelectron generation in a diode is given by the scalar product of a field operator
A with its hermitian applied to any initial and final quantum state ci. This scalar product yields the number of
photoelectrons when multiplying the scalar product with the carrier charge q

= q A t A (1)

Then the net charge (C2) absorbed in the diode during a coherent state a becomes:

(C2) := (41a) = q(alit t Ala) = qlo/1 2 = q (n) (2)

Applying the commutator on the numbering operator, we can calculate the second order moment after sorting
the operators in creators and destructors as follows:

( -02 ) : = (ct1(22 1a) q2 (ct l AtAAt Aia) — q2114 q21 2 q2 (,n )2 q2 0,0
(3)

( 2) (C2)2 (12 (n) (4)

It is important to note that the squared variance of the charge absorbed in the diode is equal to the number
density indicating that the photon and the subsequent electron flow is completely uncorrelated. As a consequence
there is a one-to-one correspondence between the photon flux and the flux of the generated photoelectrons. As we
will sec later, this is the major difference between a diode and a bolometric receiver where the photons "integrate
up" and create a hot spot. This causes the variance to be only half a BF quantum in the limit of an infinitely
slow bolometer whereas the mean value is obtained in the same way as for the diode.
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(Q) = 21aLoaR.F I cos( PRE LO)t) ± l a LO
2, 12

-I- I RFI (12)
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2. COHERENT QUANTUM LIMITED HETERODYNE DETECTION
Superimposing a Local Oscillator and a Radio Frequency Signal one arrives at a field in front of the mixer as:

, . '
B =-- ALO ± ARE ALO(RF) aLO(R,F) ei CO LO(RF) t (5)

For an non balanced heterodyne detection, the charge generated in a detector is similar to 1 for a small RF
signal compared to the LO:

= q EE q. (AL0 ARF) t (A Lo ARF) q (jitL0 ,4 .1,0 AkF ils Lo ii t
LoARF ) (6)

The mean value of the photons observed by the detector is thus:

(Q) 2IaLoaRFI COS ((
w

RF LO)t) laL01 2 ± kiRFl2 (7)

On our way to calculate the quantum noise of the detector, we have to evaluate the second moment of the
distribution too. It is given by the following relation in much of same way as in 3:

(Q2) = ((-E 01(aRFIQQ1aRFlaL0) (8)

In addition we need:

4)aLoaRF 1 2 cos((WRF coL0)192
± 4 awl' laRFI COS((WR,F Lo)t) +(Q) 2 =

4IaLo j aRF 1 3 COS((WRF WLO) t ) 21aLoa.RF

l aL01 4 laRFI4

In time average, the squared mean value becomes:

I(Q) dt = 4 1aLoaRFI 2 +101,0 
4 

aRF 4
=o

Taking only the signal part into account one arrives at:

ft=0 
(S) 2 dt = 41aLoctRFI 2 laRF 1 4 (11)

Now we are able to calculate the variance of the distribution as:

2 + (9)

(10)

+
2

(1
0

1,01
2
 + 

laRF1 2 ) < (Q2 ) (c2)2
< +2 (1 aL01+ laRF1)2

From this the signal-to-noise ratio is a±tfirarsLLtoogi2 

± 4aoaR

lance obtained as:
(Q)2

42

aRF1 2
1 +Ll ctL0F11 4 + laRFI4 1

2
21aRF12

—
2

laL01
(Q2 ) — (C2)2

Nevertheless, one has to exclude the LO fluctuations from the signal term. A more correct relation is then
obtained as:

(s)2 12 I - 14
+aL,131

a
2 L+ 40CraFL01

(Q2 ) - (Q) 2

2
1

RF"IR: 2aRF1 l I-
19 I (IRO

This is a result identical to the derivation in Haus given for a balanced diode mixer.

(13)

(14)

(15)
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4

=12a2g 0 D
¢.max = 12)Ii =1

17th International Symposium on Space Terahertz Technology ABSTRACT P1-13

3. SOLVING THE QUANTUM NOISE FOR ARBITRARY DISTRIBUTED PHOTON
PROBABILITY DENSITIES

In the genenll case it is not acceptable to approximate the photon number density probability function by a
simple Poisson distribution. There general relations' must be derived based on only a single assumption - the
expectation value of the photon counting process yields p, photons. As in the Poisson case. this value is broken
down in an integer part n and a fractional part less than unity q. Then the probability density to measure
exactly m photons becomes:

f+00 +00
ps,„ = --(1 q) p(rn — n)drn ± q f p(rn, — (n -1- 1))drn (16)

n---oo .71,--,—x

using the Kronecker delta (5x . Calculating the expectation value of this distribution yields ii, as shown by
inspection, for the variance one obtains:

00

D
2
0
 
=

ti) 2 Vq( q) (17)
m=o

Obviously ?? indicates the "average measurement error associated with a measurement on the quantum
mechanical system. This error is not dependent on the number of photons measured. It is as a quantization
noise in Analog Digital Converters simply related to the Value of the least significant bit of the conversion.

From a noise point of view, one has to calculate the maximum value of this variance. The maximum error is
thus obtained when the time averaged photon number is exactly a half away from the next integer. Therefore
the maximum variance is:

This corresponds to the well-known half quantum noise from Literature. Now we have to invoke ergodicity
stating that all statistical moments obtained on a set of measurements on a set of identical quantum system
performed at a time point are identical to the time average of measurements performed on a single quantum
system within a time interval. Then we are allowed to state the following

A field problem involving a certain photon flow per time unitist-
i
t will show a power flow and its maximum

variance given by :

Ii 7 1 1 L
PRF li

At
vRF; 

DP,mar --nvRF• At 2

Assuming that the radiation is time correlated with a time being larger than the inverse RF bandwidth of
the system re°, > Then, the band limited power density involves a correlated photon flow and its variance
as given by :

PRF,13 = PhVR.F B = (13); DO.max,B = 5
. rtvRFB = p (20)

4. A HEB HEATED BY RF BAND LIMITED ELECTROMAGNETIC RADIATION
Applying the above radiation (P) to a resistor results in photon absorption in the resistor therefore diminishing
the power flow to subsequent parts in the circuit. Nevertheless the variance p is not affected by this absorption
since the variance does not depend on the number of photons involved with the flow. This situation becomes
inherently different as soon as this resistor becomes nonlinear (by e.g. heating). Applying two sources of radiation,
a strong LO given by (PLO ) and a weak signal source (PRF) to a bolometer results in photon absorption. Using
a simple heating model for a bolometer one obtains after suppressing the small second order terms:

(19)
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Figure 1. DSB Input Quantum Noise as a function of the RF frequency in the operating point.

1 ,
— nuRFB + DC PDC2

(21)

This is the way how quantum noise is downconverted in a bolometer. Thus quantum noise follows the thermal
fluctuation noise mechanism and becomes later on band-limited within the TF bandwith of the system. it does
therefore not deteriorate the noise bandwidth of the system.

Blackbody radiation is caused by a superposition of quantized hollow modes created in a body at a given
physical temperature. The time average of the radiation e.g. emitted by the warm optics in front of the receiver
(determined by optics losses L opti„, and the optics temperature Toptics ) is given by Planck's radiation law found
in literature [e.g. Lalo& Tannoudji La mecanique quantique p.280 ]:

hURFB 
(PPlanck,optics) = L optics —L/RF 

e kBToptics

In the next step we search for an equivalent thermal noise source at the input to generate the same resistance
fluctuation as in 21. This equivalent source is attenuated by optical losses and acts on the whole IIEB. In first
order, only the fraction heating the hot spot region is able to cause a resistance fluctuation.

RO  hvRFB
L optics RF

—
2

hvRFB
hv 

e kt ,TQN 	1

Therefore the equivalent noise temperature due to quantum noise becomes:

TQN Pzdj

k log(1 + 2 • (1 — ',optics) • it)

Please observe that the quantum noise has the same IF bandwidth limitation as the conversion gain. It
does therefore not decrease the noise bandwidth of the HEB receiver. The quantum noise occurs at the point
where the frequency conversion takes place. Quantum noise is therefore not subject to any optical losses. The
"graininess" of the incoming signal is preserved by any losses in front of the bolometer. Referring to output noise
powers this is directly obvious. Nevertheless following engineering traditions, noise contributions are usually
considered as equivalent input noise temperatures. Consequently the quantum noise at the input increases with
increasing optical losses. At frequencies above 2THz, quantum noise dominates the receiver noise.

R(P) = R((Pw PRF))+ C FIF ((PLO) 'PRF (PR,F) • PLO)+ C DC PDC = R RF • ((-er,

(22)

h v

(23)
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